-
Notifications
You must be signed in to change notification settings - Fork 249
/
Copy pathrun_IJCAI_18_CoupledCF_CNN_embedding.py
428 lines (291 loc) · 19 KB
/
run_IJCAI_18_CoupledCF_CNN_embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on 13/03/19
@author: Maurizio Ferrari Dacrema
"""
from ParameterTuning.SearchSingleCase import SearchSingleCase
from ParameterTuning.SearchAbstractClass import SearchInputRecommenderArgs
from CNN_on_embeddings.run_CNN_embedding_evaluation_ablation import run_evaluation_ablation
from Base.DataIO import DataIO
import os, argparse
from Recommender_import_list import *
from functools import partial
import multiprocessing
from CNN_on_embeddings.IJCAI.CoupledCF_our_interface.Movielens1MReader.Movielens1MReader import Movielens1MReader_Wrapper
from CNN_on_embeddings.IJCAI.CoupledCF_our_interface.TafengReader.TafengReader import TafengReader_Wrapper
from CNN_on_embeddings.IJCAI.CoupledCF_our_interface.CoupledCFWrapper import CoupledCF_RecommenderWrapper
from Data_manager.DataSplitter_leave_k_out import DataSplitter_leave_k_out
from Data_manager.DataSplitter_k_fold_random import DataSplitter_k_fold_random_fromDataSplitter
from Utils.assertions_on_data_for_experiments import assert_implicit_data, assert_disjoint_matrices
from Base.Evaluation.Evaluator import EvaluatorNegativeItemSample
from CNN_on_embeddings.read_CNN_embedding_evaluation_results import read_permutation_results
from ParameterTuning.run_parameter_search import runParameterSearch_Collaborative
from Utils.ResultFolderLoader import ResultFolderLoader
import numpy as np
from keras import backend as K
from keras.models import Model
from keras.layers import Input, Lambda
import tensorflow as tf
def get_CoupledCF_assert_model(embedding_size, map_mode = "full_map"):
map_mode_flag_main_diagonal = map_mode == "main_diagonal"
map_mode_flag_off_diagonal = map_mode == "off_diagonal"
merge_attr_embedding = Input(shape=(embedding_size, embedding_size), dtype='float32', name='merge_attr_embedding')
# If using only the diagonal, remove everything not in the diagonal
if map_mode_flag_main_diagonal:
print("CoupledCF: Using main diagonal elements.")
diagonal = Lambda(lambda x: tf.linalg.diag_part(x))(merge_attr_embedding)
merge_attr_embedding_mode = Lambda(lambda x: tf.linalg.set_diag(K.zeros_like(merge_attr_embedding), x) )(diagonal)
elif map_mode_flag_off_diagonal:
print("CoupledCF: Using off diagonal elements.")
diagonal = K.zeros_like( Lambda(lambda x: tf.linalg.diag_part(x))(merge_attr_embedding) )
merge_attr_embedding_mode = Lambda(lambda x: tf.linalg.set_diag(x, diagonal) )(merge_attr_embedding)
else:
print("CoupledCF: Using all map elements.")
merge_attr_embedding_mode = merge_attr_embedding
# Final prediction layer
model = Model(inputs = [merge_attr_embedding],
outputs = merge_attr_embedding_mode)
return model
def get_hyperparameters_for_dataset(dataset_name):
if dataset_name == 'tafeng':
article_hyperparameters = {
'learning_rate': 0.005,
'epochs': 100,
'n_negative_sample': 4,
'dataset_name': "Tafeng",
'number_model': 2,
'verbose': 0,
'plot_model': False,
}
elif dataset_name == 'movielens1m':
article_hyperparameters = {
"learning_rate": 0.001,
"epochs": 100,
"n_negative_sample": 4,
"dataset_name": "Movielens1M",
"number_model": 2,
"verbose": 0,
"plot_model": False,
}
else:
raise ValueError("Invalid dataset name")
return article_hyperparameters
def run_train_with_early_stopping(dataset_name, URM_train, URM_validation,
UCM_CoupledCF, ICM_CoupledCF,
evaluator_validation, evaluator_test,
metric_to_optimize, result_folder_path,
map_mode):
if not os.path.exists(result_folder_path):
os.makedirs(result_folder_path)
article_hyperparameters = get_hyperparameters_for_dataset(dataset_name)
article_hyperparameters["map_mode"] = map_mode
earlystopping_hyperparameters = {
"validation_every_n": 5,
"stop_on_validation": True,
"lower_validations_allowed": 5,
"evaluator_object": evaluator_validation,
"validation_metric": metric_to_optimize
}
parameterSearch = SearchSingleCase(CoupledCF_RecommenderWrapper,
evaluator_validation=evaluator_validation,
evaluator_test=evaluator_test)
recommender_input_args = SearchInputRecommenderArgs(CONSTRUCTOR_POSITIONAL_ARGS=[URM_train, UCM_CoupledCF, ICM_CoupledCF],
FIT_KEYWORD_ARGS=earlystopping_hyperparameters)
recommender_input_args_last_test = recommender_input_args.copy()
recommender_input_args_last_test.CONSTRUCTOR_POSITIONAL_ARGS[0] = URM_train + URM_validation
parameterSearch.search(recommender_input_args,
recommender_input_args_last_test=recommender_input_args_last_test,
fit_hyperparameters_values=article_hyperparameters,
output_folder_path=result_folder_path,
output_file_name_root=CoupledCF_RecommenderWrapper.RECOMMENDER_NAME,
save_model = "last",
resume_from_saved=True,
evaluate_on_test = "last")
dataIO = DataIO(result_folder_path)
search_metadata = dataIO.load_data(file_name=CoupledCF_RecommenderWrapper.RECOMMENDER_NAME + "_metadata.zip")
return search_metadata
def get_URM_negatives_without_cold_users(removed_cold_users, URM_test_negative):
if removed_cold_users is None:
return URM_test_negative.copy()
users_to_preserve_mask = np.ones(URM_test_negative.shape[0], dtype=np.bool)
users_to_preserve_mask[removed_cold_users] = False
URM_test_negative_fold = URM_test_negative[users_to_preserve_mask,:]
return URM_test_negative_fold
if __name__ == '__main__':
ALGORITHM_NAME = "CoupledCF"
CONFERENCE_NAME = "IJCAI"
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--dataset_name', help = "Dataset name", type = str, default = "movielens1m")
parser.add_argument('-b', '--run_baselines', help = "Run hyperparameter tuning", type = bool, default = True)
parser.add_argument('-a', '--run_eval_ablation', help = "Run Study 2 experiments", type = bool, default = True)
parser.add_argument('-n', '--n_folds', help = "Number of folds", type = int, default = 20)
input_flags = parser.parse_args()
print(input_flags)
output_folder_path = "result_experiments/CoupledCF_{}/".format(input_flags.dataset_name)
if input_flags.dataset_name == "movielens1m":
data_reader = Movielens1MReader_Wrapper(output_folder_path + "data/", type="original")
elif input_flags.dataset_name == "tafeng":
data_reader = TafengReader_Wrapper(output_folder_path + "data/", type="original")
else:
print("Dataset name not supported, current is {}".format(input_flags.dataset_name))
exit()
print ("Current dataset is: {}".format(input_flags.dataset_name))
# If directory does not exist, create
if not os.path.exists(output_folder_path):
os.makedirs(output_folder_path)
data_loaded = data_reader.load_data()
URM_test_negative = data_loaded.AVAILABLE_URM["URM_test_negative"].copy()
dataSplitter_kwargs = {
"k_out_value": 1,
"use_validation_set": True,
"leave_random_out": True,
}
dataSplitter_k_fold = DataSplitter_k_fold_random_fromDataSplitter(data_reader, DataSplitter_leave_k_out,
dataSplitter_kwargs = dataSplitter_kwargs,
n_folds = input_flags.n_folds,
preload_all = False)
dataSplitter_k_fold.load_data(save_folder_path = output_folder_path + "data/folds/")
cutoff_list_validation = [5]
cutoff_list_test = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
metric_to_optimize = "NDCG"
################################################################################################################################################
###############################
############################### Test code on fake object to verify the alterations to the interaction map do what they are supposed to
###############################
################################################################################################################################################
embedding_size = 8
interaction_map = np.ones((1, embedding_size, embedding_size))
result_all_map = interaction_map.copy().squeeze()
model = get_CoupledCF_assert_model(embedding_size, map_mode = "main_diagonal")
result_main_diag = model.predict(interaction_map).squeeze()
model = get_CoupledCF_assert_model(embedding_size, map_mode = "off_diagonal")
result_off_diag = model.predict(interaction_map).squeeze()
assert np.allclose(result_main_diag.diagonal(), result_all_map.diagonal()), "two operations have different diagonal"
assert np.allclose(result_main_diag, np.diag(result_main_diag.diagonal())), "result_main_diag has off diagonal elements"
assert not np.allclose(result_all_map, np.diag(result_all_map.diagonal())), "result_all_map has NO off diagonal elements"
assert np.allclose(result_all_map, result_main_diag + result_off_diag), "triangular composition non consistent"
################################################################################################################################################
###############################
############################### ABLATION EXPERIMENT
###############################
################################################################################################################################################
if input_flags.run_eval_ablation:
for fold_index, dataSplitter_fold in enumerate(dataSplitter_k_fold):
URM_train, URM_validation, URM_test = dataSplitter_fold.get_holdout_split()
UCM_CoupledCF = dataSplitter_fold.get_UCM_from_name("UCM_all")
ICM_CoupledCF = dataSplitter_fold.get_ICM_from_name("ICM_all")
# Ensure negative items are consistent with positive items, accounting for removed cold users
URM_test_negative_fold = get_URM_negatives_without_cold_users(dataSplitter_fold.removed_cold_users, URM_test_negative)
# ensure IMPLICIT data
assert_implicit_data([URM_train, URM_validation, URM_test, URM_test_negative_fold])
assert_disjoint_matrices([URM_train, URM_validation, URM_test])
evaluator_validation = EvaluatorNegativeItemSample(URM_validation, URM_test_negative_fold, cutoff_list=cutoff_list_validation)
evaluator_test = EvaluatorNegativeItemSample(URM_test, URM_test_negative_fold, cutoff_list=cutoff_list_test)
recommender_input_args = SearchInputRecommenderArgs(CONSTRUCTOR_POSITIONAL_ARGS=[URM_train, UCM_CoupledCF, ICM_CoupledCF])
# Ablation with training on selected mode
for map_mode in ["all_map", "main_diagonal", "off_diagonal"]:
result_folder_path = os.path.join(output_folder_path, "fit_ablation_{}/{}_{}/".format(map_mode, map_mode, fold_index))
search_metadata = run_train_with_early_stopping(input_flags.dataset_name,
URM_train, URM_validation,
UCM_CoupledCF, ICM_CoupledCF,
evaluator_validation,
evaluator_test,
metric_to_optimize,
result_folder_path,
map_mode = map_mode)
# Ablation evaluating full map mode
for map_mode in ["all_map", "main_diagonal", "off_diagonal"]:
input_folder_path = os.path.join(output_folder_path, "fit_ablation_{}/{}_{}/".format("all_map", "all_map", fold_index))
result_folder_path = os.path.join(output_folder_path, "evaluation_ablation_{}/{}_{}/".format(map_mode, map_mode, fold_index))
run_evaluation_ablation(recommender_class=CoupledCF_RecommenderWrapper,
recommender_input_args = recommender_input_args,
evaluator_test = evaluator_test,
input_folder_path = input_folder_path,
result_folder_path = result_folder_path,
map_mode = map_mode)
read_permutation_results(output_folder_path, input_flags.n_folds, 10,
["PRECISION", "MAP_MIN_DEN", "NDCG", "F1", "HIT_RATE"],
file_result_name_root = "latex_fit_ablation_results",
convolution_model_name = CoupledCF_RecommenderWrapper.RECOMMENDER_NAME,
pretrained_model_name = None,
pretrained_model_class = None,
experiment_type = "fit_ablation")
read_permutation_results(output_folder_path, input_flags.n_folds, 10,
["PRECISION", "MAP_MIN_DEN", "NDCG", "F1", "HIT_RATE"],
file_result_name_root = "latex_evaluation_ablation_results",
convolution_model_name = CoupledCF_RecommenderWrapper.RECOMMENDER_NAME,
pretrained_model_name = None,
pretrained_model_class = None,
experiment_type = "evaluation_ablation")
################################################################################################################################################
###############################
############################### HYPERPARAMETER TUNING BASELINES
###############################
################################################################################################################################################
collaborative_algorithm_list = [
Random,
TopPop,
UserKNNCFRecommender,
ItemKNNCFRecommender,
P3alphaRecommender,
RP3betaRecommender,
PureSVDRecommender,
# NMFRecommender,
IALSRecommender,
# MatrixFactorization_BPR_Cython,
# MatrixFactorization_FunkSVD_Cython,
# EASE_R_Recommender,
]
n_cases = 50
n_random_starts = 15
result_baselines_folder_path = output_folder_path + "baselines/"
dataSplitter_fold = dataSplitter_k_fold[0]
URM_train, URM_validation, URM_test = dataSplitter_fold.get_holdout_split()
# Ensure negative items are consistent with positive items, accounting for removed cold users
URM_test_negative_fold = get_URM_negatives_without_cold_users(dataSplitter_fold.removed_cold_users, URM_test_negative)
# ensure IMPLICIT data
assert_implicit_data([URM_train, URM_validation, URM_test, URM_test_negative_fold])
assert_disjoint_matrices([URM_train, URM_validation, URM_test])
evaluator_validation = EvaluatorNegativeItemSample(URM_validation, URM_test_negative_fold, cutoff_list=cutoff_list_validation)
evaluator_test = EvaluatorNegativeItemSample(URM_test, URM_test_negative_fold, cutoff_list=cutoff_list_test)
hyperparameter_search_collaborative_partial = partial(runParameterSearch_Collaborative,
URM_train = URM_train,
URM_train_last_test = URM_train + URM_validation,
metric_to_optimize = metric_to_optimize,
evaluator_validation_earlystopping = evaluator_validation,
evaluator_validation = evaluator_validation,
evaluator_test = evaluator_test,
output_folder_path = result_baselines_folder_path,
parallelizeKNN = False,
allow_weighting = True,
resume_from_saved = True,
n_cases = n_cases,
n_random_starts = n_random_starts)
if input_flags.run_baselines:
pool = multiprocessing.Pool(processes=3, maxtasksperchild=1)
pool.map(hyperparameter_search_collaborative_partial, collaborative_algorithm_list)
pool.close()
pool.join()
n_test_users = np.sum(np.ediff1d(URM_test.indptr)>=1)
file_name = "{}..//{}_{}_".format(result_baselines_folder_path, ALGORITHM_NAME, input_flags.dataset_name)
KNN_similarity_to_report_list = ["cosine", "dice", "jaccard", "asymmetric", "tversky"]
# Put results for the CNN algorithm in the baseline folder for it to be subsequently loaded
dataIO = DataIO(folder_path = output_folder_path + "fit_ablation_all_map/all_map_0/" )
search_metadata = dataIO.load_data(CoupledCF_RecommenderWrapper.RECOMMENDER_NAME + "_metadata")
dataIO = DataIO(folder_path = result_baselines_folder_path)
dataIO.save_data(CoupledCF_RecommenderWrapper.RECOMMENDER_NAME + "_metadata", search_metadata)
result_loader = ResultFolderLoader(result_baselines_folder_path,
base_algorithm_list = None,
other_algorithm_list = [CoupledCF_RecommenderWrapper],
KNN_similarity_list = KNN_similarity_to_report_list,
ICM_names_list = None,
UCM_names_list = None)
result_loader.generate_latex_results(file_name + "{}_latex_results.txt".format("article_metrics"),
metrics_list = ["HIT_RATE", "NDCG"],
cutoffs_list = [1, 5, 10],
table_title = None,
highlight_best = True)
result_loader.generate_latex_time_statistics(file_name + "{}_latex_results.txt".format("time"),
n_evaluation_users=n_test_users,
table_title = None)