-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultivariate_series.py
670 lines (566 loc) · 23.9 KB
/
multivariate_series.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
"""
Formal Multivariate Power Series
This files provides an implementation of Formal Multivariate Power
Series. The implementation is based on the LazyPowerSeriesRing and
LazyPowerSeries class. The internal data structure uses the stream class where
each case is a list of term of the same total degree. The terms are represented
by a 2-tuple with a coefficient from the base ring and a list of integer of
the same length that the number of variable, which is the monomonial
associated to the coefficient in the serie.
The mecanism is the same that for the Lazy Power Series.
This code is based on the work of Ralf Hemmecke and Martin Rubey's, developed
by Marguerite Zamansky and Matthieu Dien.
"""
#*****************************************************************************
# Copyright (C) 2013 Matthieu Dien <[email protected]>,
#
# Distributed under the terms of the GNU General Public License (GPL)
#
# This code is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# The full text of the GPL is available at:
#
# http://www.gnu.org/licenses/
#*****************************************************************************
from series import LazyPowerSeriesRing, LazyPowerSeries, uninitialized
from stream import Stream, Stream_class
from series_order import bounded_decrement, increment, inf, unk
from sage.rings.all import Integer, prod
from functools import partial
from sage.misc.misc import repr_lincomb, is_iterator
from sage.algebras.algebra import Algebra
from sage.algebras.algebra_element import AlgebraElement
import sage.structure.parent_base
from sage.categories.all import Rings
class FormalMultivariatePowerSeriesRing(LazyPowerSeriesRing):
def __init__(self, R, element_class = None, names = None):
#Make sure R is a ring with unit element
if not R in Rings():
raise TypeError, "Argument R must be a ring."
try:
z = R(Integer(1))
except StandardError:
raise ValueError, "R must have a unit element"
#Take care of the names
if names is None:
names = ['z']
self._ngens = len(names)
self._element_class = element_class if element_class is not None else FormalMultivariatePowerSeries
self._order = None
self._names = names
self._gens = [None]*self._ngens
#TODO : LazyPowerSeriesRing herits from Algebra that use old style parent class
sage.structure.parent_base.ParentWithBase.__init__(self, R)
def ngens(self):
"""
EXAMPLES::
sage: R.<u,v,w,z> = FormalMultivariatePowerSeriesRing(QQ)
sage: R.ngens()
4
"""
return self._ngens
def gen(self,i=0):
"""
EXAMPLES::
sage: R.<u,v,w,z> = FormalMultivariatePowerSeriesRing(QQ)
sage: R.gen(2)
w
TESTS::
sage: R.<u,v,w,z> = FormalMultivariatePowerSeriesRing(QQ)
sage: R.gen(4)
Traceback (most recent call last):
...
ValueError: Generator not defined
"""
if i < 0 or i >= self._ngens:
raise ValueError("Generator not defined")
if self._gens[i] == None :
self._gens[i] = self.term(1,[int(j==i) for j in range(self._ngens)])
self._gens[i]._name = self._names[i]
return self._gens[i]
def gens(self):
"""
EXAMPLES::
sage: R.<u,v,w,z> = FormalMultivariatePowerSeriesRing(QQ)
sage: R.gens()
[u, v, w, z]
"""
return [self.gen(i) for i in range(self._ngens)]
def __repr__(self):
"""
EXAMPLES::
sage: R.<u,v,w,z> = FormalMultivariatePowerSeriesRing(QQ)
sage: R
Formal Multivariate Power Series Ring over Rational Field
"""
return "Formal Multivariate Power Series Ring over %s"%self.base_ring()
def __call__(self, x=None, order=unk):
cls = self._element_class
BR = self.base_ring()
if x is None:
res = cls(self, stream=None, order=unk, aorder=unk,
aorder_changed=True, is_initialized=False)
res.compute_aorder = uninitialized
return res
#Must be changed because inheritance
#Useless for the moment
# if isinstance(x, LazyPowerSeries):
# x_parent = x.parent()
# if x_parent.__class__ != self.__class__:
# raise ValueError
# if x_parent.base_ring() == self.base_ring():
# return x
# else:
# if self.base_ring().has_coerce_map_from(x_parent.base_ring()):
# return x._new(partial(x._change_ring_gen, self.base_ring()), lambda ao: ao, x, parent=self)
if hasattr(x, "parent") and BR.has_coerce_map_from(x.parent()):
x = BR(x)
return self.term(x, [0]*self._ngens)
if hasattr(x, "__iter__") and not isinstance(x, Stream_class):
x = iter(x)
if is_iterator(x):
x = Stream(x)
if isinstance(x, Stream_class):
aorder = order if order != unk else 0
return cls(self, stream=x, order=order, aorder=aorder,
aorder_changed=False, is_initialized=True)
elif not hasattr(x, "parent"):
x = BR(x)
return self.term(x, [0]*self._ngens)
raise TypeError, "do not know how to coerce %s into self"%x
def zero_element(self):
"""
EXAMPLES::
sage: R.<u,v,w,z> = = FormalMultivariatePowerSeriesRing(QQ)
sage: R.zero_element()
0
"""
return self.term(0,[0]*self._ngens)
def identity_element(self):
"""
EXAMPLES::
sage: R.<u,v,w,z> = = FormalMultivariatePowerSeriesRing(QQ)
sage: R.identity_element()
1
"""
return self.term(1,[0]*self._ngens)
def term(self, r, n):
"""
EXAMPLES::
sage: R.<u,v,w,z> = = FormalMultivariatePowerSeriesRing(QQ)
sage: R.term(2,[1,4,0,2])
2*u^1*v^4*w^0*z^2
::
sage: R.term(2,[0,0,0,0])
2
::
sage: R.term(0,[1,9,0,3])
0
"""
if r == self.base_ring()(0):
res = self._new_initial(inf, Stream([]))
res._name = "0"
elif sum(n) == 0:
res = self._new_initial(0, Stream([[(r,n)],[]]))
res._name = repr(r)
else:
if len(n)!=self._ngens or (True in [n[i]<0 for i in range(len(n))]) :
raise ValueError, "values in n must be non-negative and len(n) need to be gen's number"
BR = self.base_ring()
s = [[]]*sum(n)+[[(BR(r),n)]]+[[]]
res = self._new_initial(sum(n), Stream(s))
res._name= "%s"%repr(r)+''.join(["*%s^%s"%(self._names[i],n[i]) for i in range(self._ngens)])
return res
# Inherits _new_initial from LazyPowerSeriesRing
# No methods for sum_gen and prod_gen (no very useful for the moment)
class FormalMultivariatePowerSeries(LazyPowerSeries):
def __init__(self, A, stream=None, order=None, aorder=None, aorder_changed=True, is_initialized=False, name=None):
LazyPowerSeries.__init__(self, A, stream=stream, order=order, aorder=aorder, aorder_changed=aorder_changed, is_initialized=is_initialized, name=name)
self._zero = []
self._pows = None
def refine_aorder(self):
"""
Refines the approximate order of self as much as possible without
computing any coefficients.
EXAMPLES::
sage: R.<u,v,w,z> = = FormalMultivariatePowerSeriesRing(QQ)
sage: L = R([[]])
sage: L.aorder
0
sage: L.refine_aorder()
1
sage: L.coeffcient(1)
[]
sage: L.refine_aorder()
sage: L.aorder
Infinite series order
::
sage: L = R([[],[],[(1,[1,1,0,0])],[]])
sage: L.aorder
0
sage: L.coefficient(2)
[(1,[1,1,0,0])]
sage: L.refine_aorder()
sage: L.aorder
2
"""
#If we already know the order, then we don't have
#to worry about the approximate order
if self.order != unk:
return
#aorder can never be infinity since order would have to
#be infinity as well
assert self.aorder != inf
if self.aorder == unk or not self.is_initialized:
self.compute_aorder()
else:
#Try to improve the approximate order
ao = self.aorder
c = self._stream
n = c.number_computed()
if ao == 0 and n > 0:
while ao < n:
if self._stream[ao] == []:
self.aorder += 1
ao += 1
else:
self.order = ao
break
#Try to recognize the zero series
if ao == n:
#For non-constant series, we cannot do anything
if not c.is_constant():
return
if c[n-1] == []:
self.aorder = inf
self.order = inf
return
# See ticket #14685 about LazyPowerSeries
if self.order == unk:
while ao < n:
if self._stream[ao] == []:
self.aorder += 1
ao += 1
else:
self.order = ao
break
# if ao < n:
# self.order = ao
if hasattr(self, '_reference') and self._reference is not None:
self._reference._copy(self)
def _get_repr_info(self):
"""
EXAMPLES::
sage: R.<u,v,w,z> = = FormalMultivariatePowerSeriesRing(QQ)
sage: L = R([[],[(1,[1,0,0,0]),(3,[0,0,1,0])],[(1,[1,1,0,0]),(-5,[0,0,0,2])],[],[(1,[0,3,0,2])],[]])
sage: L.coefficients(5)
[[],
[(1, [1, 0, 0, 0]), (3, [0, 0, 1, 0])],
[(1, [1, 1, 0, 0]), (-5, [0, 0, 0, 2])],
[],
[(1, [0, 3, 0, 2])]]
sage: L._get_repr_info()
[('u', '1'), ('w', '3'), ('u*v', '1'), ('z^2', '-5'), ('v^3*z^2', '1')]
"""
n = len(self._stream)
l = []
if self._stream[0] <> []:
l = [(repr(self._stream[0][0][0]),1)]
for i in range(1,n):
t = self._stream[i]
for e in t:
s=[]
for j in range(self.parent().ngens()):
if e[1][j] == 0:
pass
elif e[1][j] == 1:
s+=[self.parent()._names[j]]
else:
s+=['%s^%s'%(self.parent()._names[j],e[1][j])]
l += [('*'.join(s),repr(e[0]))]
return l
def __repr__(self):
"""
EXAMPLES::
sage: R.<u,v,w,z> = = FormalMultivariatePowerSeriesRing(QQ)
sage: L = R([[],[(1,[1,0,0,0]),(3,[0,0,1,0])],[(1,[1,1,0,0]),(-5,[0,0,0,2])],[],[(1,[0,3,0,2])],[]])
sage: L.coefficients(5)
sage: L
u + 3*w + u*v + (-5)*z^2 + v^3*z^2
"""
if self._name is not None:
return self._name
if self.is_initialized:
n = len(self._stream)
x = self.parent()._names
l = repr_lincomb(self._get_repr_info())
else:
l = 'Uninitialized formal multivariate power series'
return l
def coefficient(self,*n):
"""
EXAMPLES::
sage: R.<u,v,w,z> = = FormalMultivariatePowerSeriesRing(QQ)
sage: L = R([[],[(1,[1,0,0,0]),(3,[0,0,1,0])],[(1,[1,1,0,0]),(-5,[0,0,0,2])],[],[(1,[0,3,0,2])],[]])
sage: L.coefficient(4)
[(1,[0,3,0,2])]
"""
if len(n) == 1:
n=n[0]
if self.get_aorder() > n:
return self._zero
assert self.is_initialized
return self._stream[n]
elif len(n) == self.parent().ngens():
n=list(n)
if self.get_aorder() > sum(n):
return self.parent().base_ring()(0)
assert self.is_initialized
r=[e for (e,l) in self._stream[sum(n)] if l==n]
return r[0] if r<>[] else self.parent().base_ring()(0)
else:
raise ValueError, "n must be an integer or an integer's list of size ngens()"
def _plus_gen(self,y,ao):
"""
EXAMPLES::
sage: R.<u,v,w,z> = = FormalMultivariatePowerSeriesRing(QQ)
sage: L = R([[],[(1,[1,0,0,0]),(3,[0,0,1,0])],[(1,[1,1,0,0]),(-5,[0,0,0,2])],[],[(1,[0,3,0,2])],[]])
sage: K = u+v+w*z+w^2
sage: G = L+K
sage: G.coefficient(10); G
[]
2*u + v + 3*w + w*z + w^2 + u*v + (-5)*z^2 + v^3*z^2
"""
for n in range(ao):
yield []
n = ao
while True:
new_n = []
cy = y._stream[n]
for i in range(len(self._stream[n])):
c = self._stream[n][i]
for i in range(len(cy)):
if c[1] == cy[i][1] :
c = (c[0]+cy[i][0],c[1])
cy = cy[0:i] + cy[i+1:]
break
if c[0] <> 0:
new_n.append(c)
new_n += cy
yield new_n
n += 1
def initialize_coefficient_stream(self, compute_coefficients):
ao = self.aorder
assert ao != unk
if ao == inf:
self.order = inf
self._stream = Stream(const=[])
else:
self._stream = Stream(compute_coefficients(ao))
self.is_initialized = True
def _times_gen(self, y, ao):
"""
EXAMPLES::
sage: R.<u,v,w,z> = = FormalMultivariatePowerSeriesRing(QQ)
sage: L = R([[],[(1,[1,0,0,0]),(3,[0,0,1,0])],[(1,[1,1,0,0]),(-5,[0,0,0,2])],[],[(1,[0,3,0,2])],[]])
sage: K = u+v+w*z+w^2
sage: G = L*K
sage: G.coefficient(10); G
[]
u^2 + 3*u*w + u*v + 3*v*w + u^2*v + (-5)*u*z^2 + u*v^2 + (-5)*v*z^2 + u*w*z + 3*w^2*z + u*w^2 + 3*w^3 + u*v*w*z + (-5)*w*z^3 + u*v*w^2 + (-5)*w^2*z^2 + u*v^3*z^2 + v^4*z^2 + v^3*w*z^3 + v^3*w^2*z^2
"""
for n in range(ao):
yield []
n = ao
while True:
low = self.aorder
high = n - y.aorder
nth_coefficient = []
#Handle the zero series
if low == inf or high == inf:
yield []
n += 1
continue
for k in range(low, high+1):
cx = self._stream[k]
for i in range(len(cx)):
(h,t) = cx[i]
for j in range(len(y._stream[n-k])):
(e,l)=y._stream[n-k][j]
nl=list(map(lambda a,b:a+b,t,l))
already_in_list=False
for ii in range(len(nth_coefficient)):
if nth_coefficient[ii][1]==nl:
tt = nth_coefficient[ii][0]+e*h
if t <> 0:
nth_coefficient[ii] = (tt,nl)
else :
nth_coefficient[ii] = ()
already_in_list = True
break
if not(already_in_list) :
nth_coefficient+=[(h*e,nl)]
else :
if nth_coefficient[ii] == ():
nth_coefficient=nth_coefficient[:ii]+nth_coefficient[ii+1:]
yield nth_coefficient
n += 1
def _pows_gen(self):
A=self
yield self.parent().identity_element()
yield A
while True:
A=A*self
yield A
def __pow__(self,n):
"""
EXAMPLES::
sage: R.<u,v,w,z> = = FormalMultivariatePowerSeriesRing(QQ)
sage: K = u+v+w*z+w^2
sage: G = K^7
sage: G.coefficient(20); G
[]
u^7 + 7*u^6*v + 21*u^5*v^2 + 35*u^4*v^3 + 35*u^3*v^4 + 21*u^2*v^5 + 7*u*v^6 + v^7 + 7*u^6*w*z + 7*u^6*w^2 + 42*u^5*v*w*z + 42*u^5*v*w^2 + 105*u^4*v^2*w*z + 105*u^4*v^2*w^2 + 140*u^3*v^3*w*z + 140*u^3*v^3*w^2 + 105*u^2*v^4*w*z + 105*u^2*v^4*w^2 + 42*u*v^5*w*z + 42*u*v^5*w^2 + 7*v^6*w*z + 7*v^6*w^2 + 21*u^5*w^2*z^2 + 42*u^5*w^3*z + 21*u^5*w^4 + 105*u^4*v*w^2*z^2 + 210*u^4*v*w^3*z + 105*u^4*v*w^4 + 210*u^3*v^2*w^2*z^2 + 420*u^3*v^2*w^3*z + 210*u^3*v^2*w^4 + 210*u^2*v^3*w^2*z^2 + 420*u^2*v^3*w^3*z + 210*u^2*v^3*w^4 + 105*u*v^4*w^2*z^2 + 210*u*v^4*w^3*z + 105*u*v^4*w^4 + 21*v^5*w^2*z^2 + 42*v^5*w^3*z + 21*v^5*w^4 + 35*u^4*w^3*z^3 + 105*u^4*w^4*z^2 + 105*u^4*w^5*z + 35*u^4*w^6 + 140*u^3*v*w^3*z^3 + 420*u^3*v*w^4*z^2 + 420*u^3*v*w^5*z + 140*u^3*v*w^6 + 210*u^2*v^2*w^3*z^3 + 630*u^2*v^2*w^4*z^2 + 630*u^2*v^2*w^5*z + 210*u^2*v^2*w^6 + 140*u*v^3*w^3*z^3 + 420*u*v^3*w^4*z^2 + 420*u*v^3*w^5*z + 140*u*v^3*w^6 + 35*v^4*w^3*z^3 + 105*v^4*w^4*z^2 + 105*v^4*w^5*z + 35*v^4*w^6 + 35*u^3*w^4*z^4 + 140*u^3*w^5*z^3 + 210*u^3*w^6*z^2 + 140*u^3*w^7*z + 35*u^3*w^8 + 105*u^2*v*w^4*z^4 + 420*u^2*v*w^5*z^3 + 630*u^2*v*w^6*z^2 + 420*u^2*v*w^7*z + 105*u^2*v*w^8 + 105*u*v^2*w^4*z^4 + 420*u*v^2*w^5*z^3 + 630*u*v^2*w^6*z^2 + 420*u*v^2*w^7*z + 105*u*v^2*w^8 + 35*v^3*w^4*z^4 + 140*v^3*w^5*z^3 + 210*v^3*w^6*z^2 + 140*v^3*w^7*z + 35*v^3*w^8 + 21*u^2*w^5*z^5 + 105*u^2*w^6*z^4 + 210*u^2*w^7*z^3 + 210*u^2*w^8*z^2 + 105*u^2*w^9*z + 21*u^2*w^10 + 42*u*v*w^5*z^5 + 210*u*v*w^6*z^4 + 420*u*v*w^7*z^3 + 420*u*v*w^8*z^2 + 210*u*v*w^9*z + 42*u*v*w^10 + 21*v^2*w^5*z^5 + 105*v^2*w^6*z^4 + 210*v^2*w^7*z^3 + 210*v^2*w^8*z^2 + 105*v^2*w^9*z + 21*v^2*w^10 + 7*u*w^6*z^6 + 42*u*w^7*z^5 + 105*u*w^8*z^4 + 140*u*w^9*z^3 + 105*u*w^10*z^2 + 42*u*w^11*z + 7*u*w^12 + 7*v*w^6*z^6 + 42*v*w^7*z^5 + 105*v*w^8*z^4 + 140*v*w^9*z^3 + 105*v*w^10*z^2 + 42*v*w^11*z + 7*v*w^12 + w^7*z^7 + 7*w^8*z^6 + 21*w^9*z^5 + 35*w^10*z^4 + 35*w^11*z^3 + 21*w^12*z^2 + 7*w^13*z + w^14
"""
if not isinstance(n, (int, Integer)) or n < 0:
raise ValueError, "n must be a nonnegative integer"
else:
if self._pows is None :
self._pows = Stream(self._pows_gen())
return self._pows[n]
def _seq_gen(self,ao):
assert self.coefficient(0) == []
yield [(self.base_ring()(1),[0]*self.parent()._ngens)]
k=1
while True:
nth_coefficient = []
for i in range(1,k+1):
for (e,l) in self.__pow__(i).coefficient(k):
already_in_list=False
for ii in range(len(nth_coefficient)):
if l == nth_coefficient[ii][1]:
tt = e+nth_coefficient[ii][0]
if tt <> 0:
nth_coefficient[ii]=(tt,l)
else :
nth_coefficient[ii]=()
already_in_list = True
break
if not(already_in_list) :
nth_coefficient += [(e,l)]
else:
if nth_coefficient[ii] == ():
nth_coefficient=nth_coefficient[:ii]+nth_coefficient[ii+1:]
yield nth_coefficient
k +=1
def seq(self):
"""
EXAMPLES::
sage: R.<u,v,w,z> = = FormalMultivariatePowerSeriesRing(QQ)
sage: L = u.seq()
sage: L.coeffcient(10); L
[(1, [10, 0, 0, 0])]
1 + u + u^2 + u^3 + u^4 + u^5 + u^6 + u^7 + u^8 + u^9 + u^10
::
sage: L = (u+v^2+3*w*z).seq()
sage: L.coefficient(4); L
[(1, [0, 4, 0, 0]),
(6, [0, 2, 1, 1]),
(9, [0, 0, 2, 2]),
(3, [2, 2, 0, 0]),
(9, [2, 0, 1, 1]),
(1, [4, 0, 0, 0])]
1 + u + v^2 + 3*w*z + u^2 + 2*u*v^2 + 6*u*w*z + u^3 + v^4 + 6*v^2*w*z + 9*w^2*z^2 + 3*u^2*v^2 + 9*u^2*w*z + u^4
"""
return self._new(self._seq_gen, lambda *a : 0 )
def composition(self,*args):
"""
EXAMPLES::
sage: L = u+v^2+3*w*z+w^2
sage: K = u+v^2
sage: G = L(u,v,K,z)
sage: G.coefficient(10); G
[]
u + v^2 + 3*u*z + u^2 + 3*v^2*z + 2*u*v^2 + v^4
"""
if len(args) != self.parent().ngens() :
raise ValueError, "you have to give %d arguments"%self.parent.ngens()
return self._new(partial(self._compose_gen, args),lambda *a : self.aorder)
__call__ = composition
def _compose_gen(self,args,ao):
for f in args :
assert f.coefficient(0) == []
first_term = self.coefficient(0)
new_serie = None
uninitialized = True
if first_term != [] :
uninitialized = False
new_serie = self.parent()(first_term[0][0])
yield new_serie.coefficient(0)
else:
yield []
n = 1
while True :
for (e,l) in self.coefficient(n) :
temp = reduce(lambda a,b : a*b, map(lambda a,b: a.__pow__(b), args, l), e)
if uninitialized:
uninitialized = False
new_serie = temp
else :
new_serie += temp
yield new_serie.coefficient(n)
n+=1
def derivative(self,var):
"""
EXAMPLES::
sage: L = u+v^2+3*w*z+w^2
sage: G = L.derivative(w)
sage: G.coefficient(10); G
[]
3*z + 2*w
"""
return self._new(partial(self._diff_gen,var),bounded_decrement,self)
def _diff_gen(self,var,ao):
gens = self.parent().gens()
if var not in gens:
raise ValueError, "argument must be a generator"
ind = gens.index(var)
n=1
while True:
nth_coefficient = []
for (c,l) in self.coefficient(n):
if l[ind] != 0:
nl = l[:]
nl[ind] -= 1
nth_coefficient += [(c*l[ind],nl)]
yield nth_coefficient
n+=1
def toPolynom(self,n):
"""
Return a couple compoosed by a polynomial ring and the polynomial
equal to the truncated series of degree n-1
EXAMPLES::
sage:
sage: L = u+v^2+3*w*z+w^2+u*v*z*w+u^2*v+w*z^4+v^6
sage: (PolRing,PolL) = L.toPolynom(3)
sage: PolL
v^2 + w^2 + 3*w*z + u
sage: PolRing
Multivariate Polynomial Ring in u, v, w, z over Rational Field
"""
if n>0:
from sage.rings.polynomial.all import PolynomialRing
BR=self.parent().base_ring()
R = PolynomialRing(BR,self.parent()._names)
v = R.gens()
pol = R(0)
for i in range(n):
l = self.coefficient(i)
for (e,t) in l:
pol += e*reduce((lambda a,b:a*b),map((lambda a,b:a**b),v,t))
return R,pol
else:
raise ValueError, "n must be a nonnegative integer"