-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
112 lines (101 loc) · 3.79 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import torchvision
import torch
import torchvision.transforms as transforms
from datasets import Scale
from models.taps_net import resnet50, resnet101, resnet34
from models.multihead_net import resnet50 as mh_resnet50, resnet34 as mh_resnet34, resnet101 as mh_resnet101
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def select_layers(model, train_layers):
all_layers = [b for a, b in model.named_modules() if (isinstance(b, nn.Sequential) and len(a.split('.')) == split_counter)]
num_layers = len(all_layers)
layers = all_layers[num_layers-train_layers:]
layers.append(list(model.modules())[-1])
print('training layers: {}'.format(layers))
params = []
for layer in layers:
params += list(layer.parameters())
return params
def get_pretrained_weights(model_type):
"Creates pytorch .pth file"
if model_type == 'resnet34':
model = torchvision.models.resnet34(pretrained = True)
torch.save(model.state_dict(), str(model_type) + '.pth')
if model_type == 'resnet50':
model = torchvision.models.resnet50(pretrained = True)
torch.save(model.state_dict(), str(model_type) + '.pth')
if model_type == 'resnet101':
model = torchvision.models.resnet101(pretrained = True)
torch.save(model.state_dict(), str(model_type) + '.pth')
def load_model(model_type):
if model_type == 'vit':
model = timm.create_model('vit_base_patch16_224', pretrained=True, num_classes= num_classes)
elif model_type == 'resnet34':
model = resnet34()
elif model_type == 'resnet50':
model = resnet50()
elif model_type == 'resnet101':
model = resnet101()
else:
raise Exception('Model type, {}, not an available option. Ending Training run.').format(model_type)
return model
def load_joint_model(model_type):
if model_type == 'resnet34':
model = mh_resnet34()
elif model_type == 'resnet50':
model = mh_resnet50()
elif model_type == 'resnet101':
model = mh_resnet101()
else:
raise Exception('Model type, {}, not an available option. Ending Training run.').format(model_type)
return model
def create_transforms(opts):
if opts.args.model_type == 'vit':
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
else:
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
if opts.args.cropped:
test_transform = transforms.Compose([
transforms.Resize([224,224]),
transforms.ToTensor(),
normalize,
])
train_transform = transforms.Compose([
transforms.Resize([224,224]),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
else:
test_transform = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])
train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
return train_transform, test_transform