-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path03_MODELS_quick.R
482 lines (355 loc) · 18.1 KB
/
03_MODELS_quick.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
# Script name: 03_MODELS.R
#
# Author: M.Chen, Inserm, 2021
#
# Doing: Fitting
# > functional models:
# - Outcome: daily PA distribution (phase 11)
# - Risk factors: Set of covariates (cross-sectional analyses: phase 11; prospective analyses: phase 3 or 7)
# > linear models:
# - Outcome: daily duration of SB, LIPA and MVPA (phase 11)
# - Risk factors: Set of covariates (cross-sectional analyses: phase 11; prospective analyses: phase 3 or 7)
# Script structure:
# -------- PART 1 --------
# Cross-sectional analyses (associations at phase 11)
# 1.1 Non stratified analyses
# - Functional and linear models adjusted for socio-demographics and mean waking time
# - Functional model fully adjusted
# - Functional model fully adjusted and additionnally adjusted for interactions between covariates and sex
# 1.2. Stratified analyses
# - Functional and linear models for men
# - Functional and linear models for women
# -------- PART 2 --------
# Prospective analyses (associations at phase 3 and 7)
# 2.1 Non stratified analyses
# - Functional model fully adjusted
# - Functional model fully adjusted and additionnally adjusted for interactions between covariates and sex
# 2.2. Stratified analyses
# - Functional and linear models for men at phases 3 and 7
# - Functional and linear models for women at phases 3 and 7
# -------- PART 3 --------
# Sensitivity analyses
# 3.1 Stratified models including earlier PA
# - Functional and linear models for men at phases 3 and 7
# - Functional and linear models for women at phases 3 and 7
# 3.2 Stratified models including participants with data for all phases
# - Functional and linear models for men at phases 3, 7 and 11
# - Functional and linear models for women at phases 3, 7 and 11
#--------------------------------------------------------------------
# Packages
# > Tools
library(broom)
library(xlsx)
library(lmtest)
#--------------------------------------------------------------------
# Functions to extract models coefficients
# Load other packages (tidyverse etc.)
source("E:\\PC_FIXE\\Analysis\\01_ARTICLE_1\\05_FINAL_ANALYSES_FIGURES_2\\02_FUNCTIONS.R")
#--------------------------------------------------------------------
# Data
path <- "E:\\PC_FIXE\\Analysis\\01_ARTICLE_1\\05_FINAL_ANALYSES_FIGURES_2"
# > Phase 11
load(paste0(path, "\\PHASE_11\\Data\\full_data_11.rda"))
load(paste0(path, "\\PHASE_11\\Data\\data_man_11.rda"))
load(paste0(path, "\\PHASE_11\\Data\\data_woman_11.rda"))
data0_11 <- full_data_11$lm
data1_11 <- full_data_11$fm
data0_11_man <- data_man_11$lm
data1_11_man <- data_man_11$fm
data0_11_woman <- data_woman_11$lm
data1_11_woman <- data_woman_11$fm
# > Phase 7
load(paste0(path, "\\PHASE_7\\Data\\full_data_7.rda"))
load(paste0(path, "\\PHASE_7\\Data\\data_man_7.rda"))
load(paste0(path, "\\PHASE_7\\Data\\data_woman_7.rda"))
data0_7 <- full_data_7$lm
data1_7 <- full_data_7$fm
data0_7_man <- data_man_7$lm
data1_7_man <- data_man_7$fm
data0_7_woman <- data_woman_7$lm
data1_7_woman <- data_woman_7$fm
# > Phase 3
load(paste0(path, "\\PHASE_3\\Data\\full_data_3.rda"))
load(paste0(path, "\\PHASE_3\\Data\\data_man_3.rda"))
load(paste0(path, "\\PHASE_3\\Data\\data_woman_3.rda"))
data0_3 <- full_data_3$lm
data1_3 <- full_data_3$fm
data0_3_man <- data_man_3$lm
data1_3_man <- data_man_3$fm
data0_3_woman <- data_woman_3$lm
data1_3_woman <- data_woman_3$fm
#--------------------------------------------------------------------
# -------- PART 1 --------
# Cross-sectional analyses (associations at phase 11)
# 1.1 Non stratified analyses
# Functional model (covariates: sex, age, ethnicity, last occupational position & waking time)
xi <- data1_11$xi
fm0_min <- pffr(Y_Activity ~ A_sex,
yind = xi,
bs.yindex = list(bs = "ps", k=-1),
bs.int = list(bs = "ps", k = 50),
data = data1_11)
fm1_min <- pffr(Y_Activity ~ O_waking_time + A_sex + A_age_conti_5 + A_ethnicity + A_socio_eco_cont,
yind = xi,
bs.yindex = list(bs = "ps", k=-1),
bs.int = list(bs = "ps", k = 50),
data = data1_11)
fm1_min2 <- pffr(Y_Activity ~ O_waking_time + A_sex + A_age_conti_5 + A_ethnicity,
yind = xi,
bs.yindex = list(bs = "ps", k=-1),
bs.int = list(bs = "ps", k = 50),
data = data1_11)
m0_11 <- flm_fm_fitting(vars = "A_sex", data_lm = data0_11, data_fm = data1_11)
m1_11 <- flm_fm_fitting(vars = "A_sex + A_age_conti_5 + A_ethnicity", data_lm = data0_11, data_fm = data1_11)
summary(m1_11$lm_fit$SB)
confint(m1_11$lm_fit$SB, level = 0.95)
confint(m1_11$lm_fit$LIPA, level = 0.95)
confint(m1_11$lm_fit$MVPA, level = 0.95)
#--------------------------------------------------------------------
# 1.2. Stratified analyses
# > Full models
vars <- "A_age_conti_5 + A_ethnicity + A_socio_eco_cont + A_marital_status + B_ex_smokers + B_current_smokers + B_alc_0 + B_alc_more_14 + B_fg_2 + C_bmi_overweight + C_bmi_obese + D_mmm_index + D_pcs + D_mcs"
# > Models fitting
m2_11_man <- flm_fm_fitting(vars = vars, data_lm = data0_11_man, data_fm = data1_11_man)
m2_11_woman <- flm_fm_fitting(vars = vars, data_lm = data0_11_woman, data_fm = data1_11_woman)
# > Coefficients extraction and integration (for functional models)
coef_m2_11_man <- flm_fm_coef(m2_11_man)
coef_m2_11_woman <- flm_fm_coef(m2_11_woman)
# p values
sum_man_11 <- summary(m2_11_man$fm_fit)
sum_man_11_tab <- data.frame(sum_man_11$s.table) %>%
mutate(p.value2 = round(p.value, 3))
sum_woman_11 <- summary(m2_11_woman$fm_fit)
sum_woman_11_tab <- data.frame(sum_woman_11$s.table) %>%
mutate(p.value2 = round(p.value, 3))
#--------------------------------------------------------------------
# -------- PART 2 --------
# Prospective analyses (associations at phase 3 and 7)
#--------------------------------------------------------------------
# 2.2.Stratified analyses
# > Stratified full (linear and functional) models at phase 7
# > Models fitting
m2_7_man <- flm_fm_fitting(vars = vars, data_lm = data0_7_man, data_fm = data1_7_man)
m2_7_woman <- flm_fm_fitting(vars = vars, data_lm = data0_7_woman, data_fm = data1_7_woman)
# > Coefficients extraction and integration (for functional models)
coef_m2_7_man <- flm_fm_coef(m2_7_man)
coef_m2_7_woman <- flm_fm_coef(m2_7_woman)
# p values
sum_man_7 <- summary(m2_7_man$fm_fit)
sum_man_7_tab <- data.frame(sum_man_7$s.table) %>%
mutate(p.value2 = round(p.value, 3))
sum_woman_7 <- summary(m2_7_woman$fm_fit)
sum_woman_7_tab <- data.frame(sum_woman_7$s.table) %>%
mutate(p.value2 = round(p.value, 3))
# > Stratified full (linear and functional) models at phase 3
# > Models fitting
m2_3_man <- flm_fm_fitting(vars = vars, data_lm = data0_3_man, data_fm = data1_3_man)
m2_3_woman <- flm_fm_fitting(vars = vars, data_lm = data0_3_woman, data_fm = data1_3_woman)
# > Coefficients extraction and integration (for functional models)
coef_m2_3_man <- flm_fm_coef(m2_3_man)
coef_m2_3_woman <- flm_fm_coef(m2_3_woman)
# p values
sum_man_3 <- summary(m2_3_man$fm_fit)
sum_man_3_tab <- data.frame(sum_man_3$s.table) %>%
mutate(p.value2 = round(p.value, 3))
sum_woman_3 <- summary(m2_3_woman$fm_fit)
sum_woman_3_tab <- data.frame(sum_woman_3$s.table) %>%
mutate(p.value2 = round(p.value, 3))
# Power analysis
library("sensemakr")
library("WebPower")
vars_indiv <- scan(text = vars, what = "", sep = "+")
list.wp.p <- list()
tab_power_w <- list(
phase_11 = m2_11_woman,
phase_7 = m2_7_woman,
phase_3 = m2_3_woman) %>%
map_dfr(., ~{
list.wp <- list()
for(v in vars_indiv)
{
n1 <- length(.x$lm_fit$SB$effects) # sample size
cat(paste0(n1, "\n"))
f2_sb_v <- as.numeric(as.character(partial_f2(.x$lm_fit$SB, covariates = gsub(" ", "", v)))) # effect size for the covariate for SB
f2_lipa_v <- as.numeric(as.character(partial_f2(.x$lm_fit$LIPA, covariates = gsub(" ", "", v)))) # effect size for the covariate for LIPA
f2_mvpa_v <- as.numeric(as.character(partial_f2(.x$lm_fit$MVPA, covariates = gsub(" ", "", v)))) # effect size for the covariate for MVPA
p1 <- length(.x$lm_fit$SB$coefficients)-1 # nb of covariates (nb of coef - 1 for the intercept)
p2 <- p1-1
# Compute sample size needed to obtain 80% power
#wp.sb <- wp.regression(n=NULL, p1 = p1, p2 = p2, f2 = f2_sb_v, alpha = 0.05, power = 0.8)
#wp.lipa <- wp.regression(n=NULL, p1 = p1, p2 = p2, f2 = f2_lipa_v, alpha = 0.05, power = 0.8)
#wp.mvpa <- wp.regression(n=NULL, p1 = p1, p2 = p2, f2 = f2_mvpa_v, alpha = 0.05, power = 0.8)
# Compute power of current analyses
wp.sb2 <- wp.regression(n=n1, p1 = p1, p2 = p2, f2 = f2_sb_v, alpha = 0.05, power = NULL)
wp.lipa2 <- wp.regression(n=n1, p1 = p1, p2 = p2, f2 = f2_lipa_v, alpha = 0.05, power = NULL)
wp.mvpa2 <- wp.regression(n=n1, p1 = p1, p2 = p2, f2 = f2_mvpa_v, alpha = 0.05, power = NULL)
out <- data.frame(
#wp.n = c(wp.sb$n, wp.lipa$n, wp.mvpa$n),
wp.power = c(wp.sb2$power, wp.lipa2$power, wp.mvpa2$power),
act = c("SB", "LIPA", "MVPA")
)
list.wp[[paste0(v)]]<- out
}
plyr::ldply(list.wp, data.frame, .id ="var")
}, .id="phase") %>% mutate(sex="Women")
# in men
tab_power_m <- list(
phase_11 = m2_11_man,
phase_7 = m2_7_man,
phase_3 = m2_3_man) %>%
map_dfr(., ~{
list.wp <- list()
for(v in vars_indiv)
{
n1 <- length(.x$lm_fit$SB$effects) # sample size
cat(paste0(n1, "\n"))
f2_sb_v <- as.numeric(as.character(partial_f2(.x$lm_fit$SB, covariates = gsub(" ", "", v)))) # effect size for the covariate for SB
f2_lipa_v <- as.numeric(as.character(partial_f2(.x$lm_fit$LIPA, covariates = gsub(" ", "", v)))) # effect size for the covariate for LIPA
f2_mvpa_v <- as.numeric(as.character(partial_f2(.x$lm_fit$MVPA, covariates = gsub(" ", "", v)))) # effect size for the covariate for MVPA
p1 <- length(.x$lm_fit$SB$coefficients)-1 # nb of covariates (nb of coef - 1 for the intercept)
p2 <- p1-1
# Compute sample size needed to obtain 80% power
#wp.sb <- wp.regression(n=NULL, p1 = p1, p2 = p2, f2 = f2_sb_v, alpha = 0.05, power = 0.8)
#wp.lipa <- wp.regression(n=NULL, p1 = p1, p2 = p2, f2 = f2_lipa_v, alpha = 0.05, power = 0.8)
#wp.mvpa <- wp.regression(n=NULL, p1 = p1, p2 = p2, f2 = f2_mvpa_v, alpha = 0.05, power = 0.8)
# Compute power of current analyses
wp.sb2 <- wp.regression(n=n1, p1 = p1, p2 = p2, f2 = f2_sb_v, alpha = 0.05, power = NULL)
wp.lipa2 <- wp.regression(n=n1, p1 = p1, p2 = p2, f2 = f2_lipa_v, alpha = 0.05, power = NULL)
wp.mvpa2 <- wp.regression(n=n1, p1 = p1, p2 = p2, f2 = f2_mvpa_v, alpha = 0.05, power = NULL)
out <- data.frame(
#wp.n = c(wp.sb$n, wp.lipa$n, wp.mvpa$n),
wp.power = c(wp.sb2$power, wp.lipa2$power, wp.mvpa2$power),
act = c("SB", "LIPA", "MVPA")
)
list.wp[[paste0(v)]]<- out
}
plyr::ldply(list.wp, data.frame, .id ="var")
}, .id="phase") %>% mutate(sex="Men")
tab_power <- rbind(tab_power_m, tab_power_w) %>%
mutate(sex = factor(sex, levels = c("Men", "Women")),
act = factor(act, levels = c("SB", "LIPA", "MVPA")),
phase = factor(phase, levels = c("phase_3", "phase_7", "phase_11")))
tab_power%>%
group_by(sex, phase, act) %>%
summarise(min(wp.power), max(wp.power))
tab_power %>%
arrange(sex, phase, act, wp.power) %>%
group_by(phase, act) %>%
slice(c(1, 2, n()-1, n())) %>%
split(.$phase)
tab_power %>%
mutate(phase=recode(phase, "phase_3"="1991-1993", "phase_7"="2002-2004", "phase_11"="2012-2013")) %>%
ggplot(., aes(x = wp.power, y = act, fill=sex)) +
geom_boxplot() +
#geom_jitter(aes(col = if_else(wp.power<0.25, var))) +
geom_vline(xintercept=0.8, color ="red", lty=2)+
theme_cowplot() + theme(plot.caption = element_text(size = 10, color = "black", hjust = 0)) +
coord_flip() +
scale_fill_manual(values=c("grey", "grey50"), name="Sex") +
facet_grid(. ~phase) +
labs(y="", x="Power",
caption = "Abbrevations: SB: sedentary behavior; LIPA: light-intensity physical activity;\nMVPA: moderate-to-vigorous physical activity.")
tab_power %>%
mutate(var=paste0(str_trim(var),"(xi)")) %>%
left_join(table.name, by = "var") %>%
mutate(var.group=factor(var.group, levels=c("Socio-\ndemographic\nfactors", "Behavioral\nfactors", "Health-related\nfactors"))) %>%
ggplot(., aes(x=wp.power, y = act, fill=sex)) +
geom_boxplot() +
facet_grid(.~var.group) +
geom_vline(xintercept=0.8, color ="red", lty=2)+
theme_cowplot() + theme(plot.caption = element_text(size = 10, color = "black", hjust = 0)) +
coord_flip()+
scale_fill_manual(values=c("grey", "grey50"), name="Sex") +
labs(y="", x="Power",
caption = "Abbrevations: SB: sedentary behavior; LIPA: light-intensity physical activity;\nMVPA: moderate-to-vigorous physical activity.")
#--------------------------------------------------------------------
# -------- PART 3 --------
# Sensitivity analyses
#--------------------------------------------------------------------
# 3.1. Including past PA
# > Covariates (socio-demographics, behavioral, cardiometabolic and health-related covariates)
vars_s1 <- "A_age_conti_5 + A_ethnicity + A_socio_eco_cont + A_marital_status + B_ex_smokers + B_current_smokers + B_alc_0 + B_alc_more_14 + B_fg_2 + B_mvpa_inactive + B_mvpa_less_2.5 + C_bmi_overweight + C_bmi_obese + D_mmm_index + D_pcs + D_mcs"
# > Stratified full (linear and functional) models at
# phase 7
# > Models fitting
m2_7_man_s1 <- flm_fm_fitting(vars = vars_s1, data_lm = data0_7_man, data_fm = data1_7_man)
m2_7_woman_s1 <- flm_fm_fitting(vars = vars_s1, data_lm = data0_7_woman, data_fm = data1_7_woman)
# > Coefficients extraction and integration (for functional models)
coef_m2_7_man_s1 <- flm_fm_coef(m2_7_man_s1)
coef_m2_7_woman_s1 <- flm_fm_coef(m2_7_woman_s1)
# phase 3
# > Models fitting
m2_3_man_s1 <- flm_fm_fitting(vars = vars_s1, data_lm = data0_3_man, data_fm = data1_3_man)
m2_3_woman_s1 <- flm_fm_fitting(vars = vars_s1, data_lm = data0_3_woman, data_fm = data1_3_woman)
# > Coefficients extraction and integration (for functional models)
coef_m2_3_man_s1 <- flm_fm_coef(m2_3_man_s1)
coef_m2_3_woman_s1 <- flm_fm_coef(m2_3_woman_s1)
#--------------------------------------------------------------------
# 3.2. Study sample limited to participants with data for all phases
# Data
path <- "E:\\PC_FIXE\\Analysis\\01_ARTICLE_1\\05_FINAL_ANALYSES_FIGURES_2\\ALL_PHASES\\Data\\"
# > Phase 11
load(paste0(path, "full_data_11.rda"))
load(paste0(path, "full_data_man_11.rda"))
load(paste0(path, "full_data_woman_11.rda"))
data0_11_s2 <- data_11_full$lm
data1_11_s2 <- data_11_full$fm
data0_11_man_s2 <- data_man_11_full$lm
data1_11_man_s2 <- data_man_11_full$fm
data0_11_woman_s2 <- data_woman_11_full$lm
data1_11_woman_s2 <- data_woman_11_full$fm
# > Phase 7
load(paste0(path, "full_data_7.rda"))
load(paste0(path, "full_data_man_7.rda"))
load(paste0(path, "full_data_woman_7.rda"))
data0_7_s2 <- data_7_full$lm
data1_7_s2 <- data_7_full$fm
data0_7_man_s2 <- data_man_7_full$lm
data1_7_man_s2 <- data_man_7_full$fm
data0_7_woman_s2 <- data_woman_7_full$lm
data1_7_woman_s2 <- data_woman_7_full$fm
# > Phase 3
load(paste0(path, "full_data_3.rda"))
load(paste0(path, "full_data_man_3.rda"))
load(paste0(path, "full_data_woman_3.rda"))
data0_3_s2 <- data_3_full$lm
data1_3_s2 <- data_3_full$fm
data0_3_man_s2 <- data_man_3_full$lm
data1_3_man_s2 <- data_man_3_full$fm
data0_3_woman_s2 <- data_woman_3_full$lm
data1_3_woman_s2 <- data_woman_3_full$fm
# --------
# Model fitting
# > Full models
# Phase 11
# > Models fitting
m2_11_man_s2 <- flm_fm_fitting(vars = vars, data_lm = data0_11_man_s2, data_fm = data1_11_man_s2)
m2_11_woman_s2 <- flm_fm_fitting(vars = vars, data_lm = data0_11_woman_s2, data_fm = data1_11_woman_s2)
# > Coefficients extraction and integration (for functional models)
coef_m2_11_man_s2 <- flm_fm_coef(m2_11_man_s2)
coef_m2_11_woman_s2 <- flm_fm_coef(m2_11_woman_s2)
# Phase 7
# > Models fitting
m2_7_man_s2 <- flm_fm_fitting(vars = vars, data_lm = data0_7_man_s2, data_fm = data1_7_man_s2)
m2_7_woman_s2 <- flm_fm_fitting(vars = vars, data_lm = data0_7_woman_s2, data_fm = data1_7_woman_s2)
# > Coefficients extraction and integration (for functional models)
coef_m2_7_man_s2 <- flm_fm_coef(m2_7_man_s2)
coef_m2_7_woman_s2 <- flm_fm_coef(m2_7_woman_s2)
# Phase 3
# > Models fitting
m2_3_man_s2 <- flm_fm_fitting(vars = vars, data_lm = data0_3_man_s2, data_fm = data1_3_man_s2)
m2_3_woman_s2 <- flm_fm_fitting(vars = vars, data_lm = data0_3_woman_s2, data_fm = data1_3_woman_s2)
# > Coefficients extraction and integration (for functional models)
coef_m2_3_man_s2 <- flm_fm_coef(m2_3_man_s2)
coef_m2_3_woman_s2 <- flm_fm_coef(m2_3_woman_s2)
#--------------------------------------------------------------------
# 3.3. Including social interactions
# > Covariates (socio-demographics, behavioral, cardiometabolic and health-related covariates)
vars_s3 <- "A_age_conti_5 + A_ethnicity + A_socio_eco_cont + A_marital_status + B_ex_smokers + B_current_smokers + B_alc_0 + B_alc_more_14 + B_social_act + B_fg_2 + C_bmi_overweight + C_bmi_obese + D_mmm_index + D_pcs + D_mcs"
# > Stratified full (linear and functional) models at phase 11
# > Models fitting
m2_11_man_s3 <- flm_fm_fitting(vars = vars_s3, data_lm = data0_11_man, data_fm = data1_11_man)
m2_11_woman_s3 <- flm_fm_fitting(vars = vars_s3, data_lm = data0_11_woman, data_fm = data1_11_woman)
# > Coefficients extraction and integration (for functional models)
coef_m2_11_man_s3 <- flm_fm_coef(m2_11_man_s3)
coef_m2_11_woman_s3 <- flm_fm_coef(m2_11_woman_s3)