-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathai.py
144 lines (112 loc) · 4.88 KB
/
ai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# AI for Self Driving Car
# Importing the libraries
import numpy as np
import random
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.autograd as autograd
from torch.autograd import Variable
# Creating the architecure of the Neural Network
class Network(nn.Module):
def __init__(self, input_size, nb_action, hidden_neurons):
super(Network, self).__init__()
self.input_size = input_size
self.nb_action = nb_action
self.fc0 = nn.Linear(input_size, hidden_neurons)
self.fc1 = nn.Linear(hidden_neurons, hidden_neurons)
self.fc11 = nn.Linear(hidden_neurons, hidden_neurons)
self.fc2 = nn.Linear(hidden_neurons, nb_action)
def forward(self, state): # Forward propagation
x0 = F.relu(self.fc0(state))
x1 = F.relu(self.fc1(x0))
x11 = F.relu(self.fc11(x1))
q_values = self.fc2(x11)
return q_values
# Implementing Experience Replay
class ReplayMemory(object):
def __init__(self, capacity):
self.capacity = capacity
self.memory = []
def push(self, event):
self.memory.append(event)
if len(self.memory) > self.capacity:
del self.memory[0]
def sample(self, batch_size):
samples = zip(*random.sample(self.memory, batch_size))
return map(lambda x: Variable(torch.cat(x, 0)), samples)
# Implementaing Deep Q Learning
class Dqn:
input_size = 0
nb_action = 0
driving_config = None
def __init__(self, input_size, nb_action, config):
self.driving_config = config
self.gamma = self.driving_config.dqn_gamma
self.reward_window = []
self.input_size = input_size
self.nb_action = nb_action
self.model = Network(input_size, nb_action, self.driving_config.dqn_hidden_neurons)
self.memory = ReplayMemory(100000)
self.optimizer = optim.Adam(self.model.parameters(), lr=self.driving_config.dqn_learning_rate)
self.last_state = torch.Tensor(input_size).unsqueeze(0)
self.last_action = 0
self.last_reward = 0
def reset(self, config):
self.driving_config = config
self.reward_window = []
self.model = Network(self.input_size, self.nb_action, self.driving_config.dqn_hidden_neurons)
self.memory = ReplayMemory(100000)
self.optimizer = optim.Adam(self.model.parameters(), lr=self.driving_config.dqn_learning_rate)
self.last_state = torch.Tensor(self.input_size).unsqueeze(0)
self.last_action = 0
self.last_reward = 0
def select(self, state):
probs = F.softmax(self.model(Variable(state, volatile=True)) * self.driving_config.dqn_temperature)
action = probs.multinomial(num_samples=1)
return action.data[0, 0]
def learn(self, batch_state, batch_next_state, batch_reward, batch_action):
outputs = self.model(batch_state).gather(1, batch_action.unsqueeze(1)).squeeze(1)
next_outputs = self.model(batch_next_state).detach().max(1)[0]
target = self.gamma * next_outputs + batch_reward
td_loss = F.smooth_l1_loss(outputs, target)
self.optimizer.zero_grad()
td_loss.backward(retain_variables=True)
self.optimizer.step()
def update(self, reward, signal):
new_state = torch.Tensor(signal).float().unsqueeze(0)
last_action_tensor = torch.LongTensor([int(self.last_action)]) # converting an int to a tensor
reward_tensor = torch.Tensor([self.last_reward])
self.memory.push((self.last_state, new_state, last_action_tensor, reward_tensor))
action = self.select(new_state)
if len(self.memory.memory) > self.driving_config.dqn_sample_size:
# print("sampling")
batch_state, batch_next_state, batch_action, batch_reward = self.memory.sample(self.driving_config.dqn_sample_size)
# print("learning")
self.learn(batch_state, batch_next_state, batch_reward, batch_action)
self.last_action = action
self.last_state = new_state
self.last_reward = reward
self.reward_window.append(reward)
if len(self.reward_window) > 1000:
del self.reward_window[0]
# print("acting")
return action
def score(self):
return sum(self.reward_window) / (len(self.reward_window) + 1) # trick to avoid dividing by 0
def save(self):
torch.save({
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict()
}, 'last_brain.pth')
def load(self):
if os.path.isfile('last_brain.pth'):
print("Loading last save")
checkpoint = torch.load('last_brain.pth')
self.model.load_state_dict(checkpoint['state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
print("Loaded")
else:
print("No save to load")