-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
33 lines (27 loc) · 1.17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from swahiliNewsClassifier import log
from swahiliNewsClassifier.pipeline.stage_01_data_ingestion import DataIngestionTrainingPipeline
from swahiliNewsClassifier.pipeline.stage_02_model_training_and_evaluation import ModelTrainingAndEvaluationPipeline
def run_pipeline_stage(stage_name, pipeline_class) -> None:
"""
Run a pipeline stage and handle logging and exceptions.
Args:
stage_name (str): The name of the stage to run.
pipeline_class (class): The class of the pipeline stage to instantiate and run.
Returns:
None
"""
try:
log.info(
f"\033[1m>>>>>>>>>>>>>>>>>>>>> {stage_name} STARTED <<<<<<<<<<<<<<<<<<<<<\033[0m")
pipeline = pipeline_class()
pipeline.main()
log.info(
f"\033[1m>>>>>>>>>>>>>>>>>>> {stage_name} COMPLETED <<<<<<<<<<<<<<<<<<<\033[0m\n")
except Exception as e:
log.exception(f"An error occurred during {stage_name}: {e}")
raise e
if __name__ == '__main__':
run_pipeline_stage("DATA INGESTION STAGE", DataIngestionTrainingPipeline)
run_pipeline_stage(
"MODEL TRAINING AND EVALUATION STAGE",
ModelTrainingAndEvaluationPipeline)