-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDigits.py
210 lines (176 loc) · 5.95 KB
/
Digits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#==============================================================================
# Convolutional Neural Network on MNIST digits data
#==============================================================================
#from keras.models import Sequential
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import pickle
import os
import gzip
import random
import numpy as np
import theano
import lasagne
from lasagne import layers
from lasagne.updates import nesterov_momentum
from nolearn.lasagne import NeuralNet
from nolearn.lasagne import visualize
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
#==============================================================================
# Misc functions
#==============================================================================
# Load data
import pickle
import gzip
def load_dataset(dataset_path = '/Users/Mia/Downloads/gzip/letters/mnist.pkl.gz'):
file = gzip.open(dataset_path, 'rb')
data = pickle.load(file, encoding='latin1')
X_train, y_train = data[0]
X_test, y_test = data[1]
# Reshape
X_train = X_train.reshape((-1, 1, 28, 28))
X_test = X_test.reshape((-1, 1, 28, 28))
# Change dataformat
y_train = y_train.astype(np.uint8)
y_test = y_test.astype(np.uint8)
return X_train, y_train, X_test, y_test
# Plot confusion matrix
import itertools
import matplotlib.pyplot as plt
def plot_confusion_matrix(y_test, preds, cmap=plt.cm.Blues):
# Setup
classes = np.unique(y_test)
tick_marks = np.arange(len(classes))
cmap = plt.cm.Blues
# Confusion matrix
cm = confusion_matrix(y_test, preds)
# Plot
plt.figure(figsize=(6,6))
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
plt.title('Confusion matrix')
plt.colorbar()
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
return cm
#==============================================================================
#
#==============================================================================
# Load data
X_train, y_train, X_test, y_test = load_dataset()
X_train_s = X_train[:1000]
y_train_s = y_train[:1000]
X_test_s = X_test[:1000]
y_test_s = y_test[:1000]
# Example image
random.sample
plt.imshow(X_train[0][0], cmap=cm.binary)
# Convolutional NN
net1 = NeuralNet(
layers=[('input', layers.InputLayer),
('conv2d1', layers.Conv2DLayer),
('maxpool1', layers.MaxPool2DLayer),
('conv2d2', layers.Conv2DLayer),
('maxpool2', layers.MaxPool2DLayer),
('dropout1', layers.DropoutLayer),
('dense', layers.DenseLayer),
('dropout2', layers.DropoutLayer),
('output', layers.DenseLayer),
],
# input layer
input_shape=(None, 1, 28, 28),
# layer conv2d1
conv2d1_num_filters=32,
conv2d1_filter_size=(5, 5),
conv2d1_nonlinearity=lasagne.nonlinearities.rectify,
conv2d1_W=lasagne.init.GlorotUniform(),
# layer maxpool1
maxpool1_pool_size=(2, 2),
# layer conv2d2
conv2d2_num_filters=32,
conv2d2_filter_size=(5, 5),
conv2d2_nonlinearity=lasagne.nonlinearities.rectify,
# layer maxpool2tra
maxpool2_pool_size=(2, 2),
# dropout1
dropout1_p=0.5,
# dense
dense_num_units=256,
dense_nonlinearity=lasagne.nonlinearities.rectify,
# dropout2
dropout2_p=0.5,
# output
output_nonlinearity=lasagne.nonlinearities.softmax,
output_num_units=10,
# optimization method params
update=nesterov_momentum,
update_learning_rate=0.02,
update_momentum=0.9,
max_epochs=50,
verbose=1,
)
# Train the network
nn = net1.fit(X_train_s, y_train_s)
#nn = net1.fit(X_train, y_train)
# Test CNN
preds = net1.predict(X_test)
# Confusion matrix
plot_confusion_matrix(y_test, preds)
visualize.plot_conv_weights(net1.layers_['conv2d1'])
visualize.plot_conv_weights(net1.layers_['conv2d2'])
# =============================================================================
# Architecture 2
# =============================================================================
# Convolutional NN
net2 = NeuralNet(
layers=[('input', layers.InputLayer),
('conv2d1', layers.Conv2DLayer),
('maxpool1', layers.MaxPool2DLayer),
('conv2d2', layers.Conv2DLayer),
('maxpool2', layers.MaxPool2DLayer),
('output', layers.DenseLayer),
],
# input layer
input_shape=(None, 1, 28, 28),
# layer conv2d1
conv2d1_num_filters=32,
conv2d1_filter_size=(4, 4),
conv2d1_nonlinearity=lasagne.nonlinearities.rectify,
conv2d1_W=lasagne.init.GlorotUniform(),
# layer maxpool1
maxpool1_pool_size=(2, 2),
# layer conv2d2
conv2d2_num_filters=64,
conv2d2_filter_size=(4, 4),
conv2d2_nonlinearity=lasagne.nonlinearities.rectify,
# layer maxpool2
maxpool2_pool_size=(2, 2),
# output
output_nonlinearity=lasagne.nonlinearities.softmax,
output_num_units=10,
# optimization method params
update=nesterov_momentum,
update_learning_rate=0.05,
update_momentum=0.9,
max_epochs=10,
verbose=1,
)
# Train the network
nn2 = net2.fit(X_train_s, y_train_s)
# Test CNN
preds2 = net2.predict(X_test)
# Confusion matrix
plot_confusion_matrix(y_test, preds2)
visualize.plot_conv_weights(net2.layers_['conv2d1'])
visualize.plot_conv_weights(net2.layers_['conv2d2'])