-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhslncs_plots_AMK.Rmd
348 lines (240 loc) · 6.62 KB
/
hslncs_plots_AMK.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
---
title: "data viz"
author: "Maria"
date: "4/1/2021"
output: html_document
---
# Human lncRNA expression during LS Plasmodium infection
```{r}
#load libraries
library(tidyverse)
library(pheatmap)
library(RColorBrewer)
library(readr)
```
The data used below is from the S5 table form Posfai et al 2018, and has been filtered to be only lncRNAs. The list of lncRNAs was taken from Kaessmann et al 2019.
```{r}
#import data
hslncs <- read_csv("source_data/lncs_s5.csv")
```
```{r}
hslncs_df <- as.data.frame(hslncs)
```
```{r}
head(hslncs_df)
```
```{r}
#diagnose data, make sure looks ok
hslncs_df$timepoint <- as_factor(hslncs$timepoint)
hslncs_df$timepoint <- fct_relevel(hslncs$timepoint, "early", "mid", "late")
head(hslncs_df)
```
```{r}
xx <- pull(yy, gene)
```
```{r}
yy <- filter(hslncsc, diffexpressed == "UP" | diffexpressed == "DOWN")
```
```{r}
is.character(closest_df$`LncRNA name`)
```
```{r}
#remove duplicate rows
hslncsc <- unique(hslncs_df)
```
Removing duplicate rows gotrid of ~4k rows.
## Volcano Plots
To generate a volcano plot, we first need to have a column in our results data indicating whether or not the gene is considered differentially expressed based on p-adjusted values.
```{r}
ggplot(hslncsc) +
aes(x = log2FC, y = -log10(padj)) +
geom_point() +
theme_bw() +
facet_grid(rows = vars(cell), cols = vars(timepoint))
```
This is good but I want to color the differentially expressed lncs. My threshold for log2Fc is low, ~1.4.
```{r}
# The significantly differentially expressed genes are the ones found in the upper-left and upper-right corners.
# Add a column to the data frame to specify if they are UP- or DOWN- regulated (log2FoldChange respectively positive or negative)
# add a column of NAs
hslncsc$diffexpressed <- "NO"
# if log2Foldchange > 0.5 and pvalue < 0.05, set as "UP"
hslncsc$diffexpressed[hslncsc$log2FC > 0.5 & hslncsc$padj < 0.05] <- "UP"
# if log2Foldchange < -0.5 and pvalue < 0.05, set as "DOWN"
hslncsc$diffexpressed[hslncsc$log2FC < -0.5 & hslncsc$padj < 0.05] <- "DOWN"
```
```{r}
hslncsc
```
```{r}
# Re-plot but this time color the points with "diffexpressed"
ggplot(hslncsc) +
aes(x = log2FC, y = -log10(padj), color = diffexpressed, alpha = 0.05) +
geom_point() +
theme_gray() +
facet_grid(rows = vars(cell), cols = vars(timepoint), scales = "free_y") +
scale_color_manual(values = c("orange","gray","darkblue"))
```
## Top DEG genes
```{r}
filter
```
```{r}
deg_gene_up <- hslncsc[hslncsc$diffexpressed == "UP",]
deg_gene_down <- hslncsc[hslncsc$diffexpressed == "DOWN",]
deg_gene <- rbind(deg_gene_up, deg_gene_down)
```
```{r}
deg_gene
```
```{r}
deg_gene_gene <- deg_gene$gene
```
```{r}
#plot example dotplot for gene/neighbor graph
ggplot(deg_gene) +
aes(x = log2FC, y = reorder(gene, log2FC), color = timepoint) +
geom_point(size = 2.5) +
facet_grid(rows = vars(cell)) +
theme_bw() +
theme(
aspect.ratio = 4 / 3,
text = element_text(size = 11),
panel.grid.minor.y = element_blank(),
panel.grid.major.y = element_line(colour = "gray", size = 0.25, linetype = "dashed"),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank()
)
```
# Import coding gene data
```{r}
#import s5 table from plos pathogens paper
hsgenes <- read_csv("source_data/S5_Table.csv")
hsgenes_df <- as.data.frame(hsgenes)
#import kaessmar paper with lncRNAs and closest neighbor coding gene
closest <- read_csv("source_data/select_Kaessmann2019.csv")
closest_df <- as.data.frame(closest)
```
```{r}
df[df$aged <= df$laclen, ]
```
```{r}
closest_df
```
```{r}
deg_gene_gene
```
```{r}
deg_gene_gene_fact <- as.factor(deg_gene_gene)
```
```{r}
closest_df$`LncRNA name`
```
```{r}
closest_df_na_omit <- na.omit(closest_df)
```
```{r}
subset(closest_df_na_omit, 'LncRNA name' %in% deg_gene_gene_fact)
```
```{r}
closest_final <- closest_df_na_omit[closest_df_na_omit$`LncRNA name` %in% deg_gene_gene_fact, ]
```
```{r}
dup_removed <- closest_final[!duplicated(closest_final$`ENSEMBL75 id`), ]
```
```{r}
dup_removed
```
```{r}
dup_removed_ensembl <- as.factor(dup_removed$`ENSEMBL75 id`)
```
```{r}
dup_removed_ensembl
```
```{r}
setwd("~/R/hslncs_ls/source_data")
```
```{r}
S5 <- read_csv("source_data/S5_Table.csv")
```
```{r}
head(S5)
```
```{r}
S5_Closest <- S5[S5$ensembl %in% dup_removed_ensembl, ]
```
```{r}
S5_Closest %>%
mutate(gene = fct_relevel(gene,
"RP11-415J8.5", "RP5-1033H22.2","RP11-525K10.3","LINC-PINT","CTB-171A8.1", "AC019181.2", "RP13-650J16.1" ,"RP5-1120P11.1","HOXD-AS1","RP11-626P14.2","RP11-798K3.2","AC114730.3","LINC00152","NEAT1","CDKN2B-AS1", "CASC19","RP6-99M1.2", "MIR29A","RP11-277P12.20","RP11-462L8.1","CTB-176F20.3","RP11-616M22.7","RP4-533D7.5", "AC004510.3")) %>%
ggplot(aes(x = log2FC, y = gene, color = timepoint)) +
geom_point(size = 2.5) +
facet_grid(rows = vars(cell)) +
theme_bw() +
theme(
aspect.ratio = 4 / 3,
text = element_text(size = 11),
panel.grid.minor.y = element_blank(),
panel.grid.major.y = element_line(colour = "gray", size = 0.25, linetype = "dashed"),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank()
)
```
```{r}
deg_gene$gene
```
```{r}
merged <- rbind(deg_gene, S5_Closest)
```
```{r}
deg_gene
```
```{r}
S5_Closest
```
```{r}
S5_Closest$diffexpressed <- "NO"
```
```{r}
# if log2Foldchange > 0.5 and pvalue < 0.05, set as "UP"
S5_Closest$diffexpressed[S5_Closest$log2FC > 0.5 & S5_Closest$padj < 0.05] <- "UP"
# if log2Foldchange < -0.5 and pvalue < 0.05, set as "DOWN"
S5_Closest$diffexpressed[S5_Closest$log2FC < -0.5 & S5_Closest$padj < 0.05] <- "DOWN"
```
```{r}
Final <- rbind(deg_gene, S5_Closest)
```
```{r}
```
```{r}
ab <- rbind(a, b)
```
```{r}
Final1 <- cbind(Final, ab)
```
```{r}
a <- data.frame("x" = rep("LncRNA", times=26))
```
```{r}
71:140
```
```{r}
Final1 %>%
mutate(gene = fct_relevel(gene,
"RP11-415J8.5", "RP5-1033H22.2","RP11-525K10.3","LINC-PINT","CTB-171A8.1", "AC019181.2", "RP13-650J16.1" ,"RP5-1120P11.1","HOXD-AS1","RP11-626P14.2","RP11-798K3.2","AC114730.3","LINC00152","NEAT1","CDKN2B-AS1", "CASC19","RP6-99M1.2", "MIR29A","RP11-277P12.20","RP11-462L8.1","CTB-176F20.3","RP11-616M22.7","RP4-533D7.5", "AC004510.3")) %>%
ggplot(aes(x = log2FC, y = gene, color = timepoint)) +
geom_point(size = 2.5) +
facet_grid(vars(cell),vars(x)) +
theme_bw() +
theme(
aspect.ratio = 4 / 3,
text = element_text(size = 11),
panel.grid.minor.y = element_blank(),
panel.grid.major.y = element_line(colour = "gray", size = 0.25, linetype = "dashed"),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank()
)
```
```{r}
Final1$x
```