Skip to content

Latest commit

 

History

History
269 lines (192 loc) · 12.8 KB

deposits.md

File metadata and controls

269 lines (192 loc) · 12.8 KB

Deposits

Deposited transactions, also known as deposits are transactions which are initiated on L1, and executed on L2. This document outlines a new transaction type for deposits. It also describes how deposits are initiated on L1, along with the authorization and validation conditions on L2.

Vocabulary note: deposited transaction refers specifically to an L2 transaction, while deposit can refer to the transaction at various stages (for instance when it is deposited on L1).

Table of Contents

The Deposited Transaction Type

Deposited transactions have the following notable distinctions from existing transaction types:

  1. They are derived from Layer 1 blocks, and must be included as part of the protocol.
  2. They do not include signature validation (see User-Deposited Transactions for the rationale).

We define a new EIP-2718 compatible transaction type with the prefix 0x7E, and the following fields (rlp encoded in the order they appear here):

  • bytes32 sourceHash: the source-hash, uniquely identifies the origin of the deposit
  • address from: The address of the sender account.
  • address to: The address of the recipient account, or the null (zero-length) address if the deposited transaction is a contract creation.
  • uint256 mint: The ETH value to mint on L2.
  • uint256 value: The ETH value to send to the recipient account.
  • bytes data: The input data.
  • uint64 gasLimit: The gasLimit for the L2 transaction.

In contrast to EIP-155 transactions, this transaction type does not include signature information, and makes the from address explicit.

We select 0x7E because transaction type identifiers are currently allowed to go up to 0x7F. Picking a high identifier minimizes the risk that the identifier will be used be claimed by another transaction type on the L1 chain in the future. We don't pick 0x7F itself in case it becomes used for a variable-length encoding scheme.

Source hash computation

The sourceHash of a deposit transaction is computed based on the origin:

  • User-deposited: keccak256(bytes32(uint256(0)), keccak256(l1BlockHash, bytes32(uint256(l1LogIndex)))). Where the l1BlockHash, and l1LogIndex all refer to the inclusion of the deposit log event on L1. l1LogIndex is the index of the deposit event log in the combined list of log events of the block.
  • L1 attributes deposited: keccak256(bytes32(uint256(1)), keccak256(bytes32(uint256(l1BlockHash)), bytes32(uint256(seqNumber)). Where l1BlockHash refers to the L1 block hash of which the info attributes are deposited. And seqNumber = l2BlockNum - l2EpochStartBlockNum, where l2BlockNum is the L2 block number of the inclusion of the deposit tx in L2, and l2EpochStartBlockNum is the L2 block number of the first L2 block in the epoch.

Without a sourceHash in a deposit, two different deposited transactions could have the same exact hash.

The outer keccak256 hashes the actual uniquely identifying information with a domain, to avoid collisions between different types of sources.

We do not use the sender's nonce to ensure uniqueness because this would require an extra L2 EVM state read from the execution engine during block-derivation.

Kinds of Deposited Transactions

Although we define only one new transaction type, we can distinguish between two kinds of deposited transactions, based on their positioning in the L2 block:

  1. The first transaction MUST be a L1 attributes deposited transaction, followed by
  2. an array of zero-or-more user-deposited transactions submitted to the deposit feed contract on L1. User-deposited transactions are only present in the first block of a L2 epoch.

We only define a single new transaction type in order to minimize modifications to L1 client software, and complexity in general.

Validation and Authorization of Deposited Transactions

As noted above, the deposited transaction type does not include a signature for validation. Rather, authorization is handled by the L2 chain derivation process, which when correctly applied will only derive transactions with a from address attested to by the logs of the L1 deposit contract.

Execution

In order to execute a deposited transaction:

First, the balance of the from account MUST be increased by the amount of mint.

Then, the execution environment for a deposited transaction is initialized based on the transaction's attributes, in exactly the same manner as it would be for an EIP-155 transaction.

Specifically, a new EVM call frame targeting the to address is created with values initialized as follows:

  • CALLER and ORIGIN set to from
    • from is unchanged from the deposit feed contract's logs (though the address may have been aliased by the deposit feed contract).
  • context.calldata set to data
  • context.gas set to gasLimit
  • context.value set to sendValue

Nonce Handling

Despite the lack of signature validation, we still increment the nonce of the from account when a deposit transaction is executed. In the context of a deposit-only roll up, this is not necessary for transaction ordering or replay prevention, however it maintains consistency with the use of nonces during contract creation. It may also simplify integration with downstream tooling (such as wallets and block explorers).

L1 Attributes Deposited Transaction

An L1 attributes deposited transaction is a deposit transaction sent to the L1 attributes predeployed contract.

This transaction MUST have the following values:

  1. from is 0xdeaddeaddeaddeaddeaddeaddeaddeaddead0001 (the address of the L1 Attributes depositor account)
  2. to is 0x4200000000000000000000000000000000000015 (the address of the L1 attributes predeployed contract).
  3. mint is 0
  4. value is 0
  5. gasLimit is set to the maximum available.
  6. data is an ABI encoded call to the L1 attributes predeployed contract's setL1BlockValues() function with correct values associated with the corresponding L1 block (cf. reference implementation).

No gas is paid for L1 attributes deposited transactions.

Special Accounts on L2

The L1 attributes deposit transaction involves two special purpose accounts:

  1. The L1 attributes depositor account
  2. The L1 attributes predeployed contract

L1 Attributes Depositor Account

The depositor account is an EOA with no known private key. It has the address 0xdeaddeaddeaddeaddeaddeaddeaddeaddead0001. Its value is returned by the CALLER and ORIGIN opcodes during execution of the L1 attributes deposited transaction.

L1 Attributes Predeployed Contract

A predeployed contract on L2 at address 0x4200000000000000000000000000000000000015, which holds certain block variables from the corresponding L1 block in storage, so that they may be accessed during the execution of the subsequent deposited transactions.

Apart from the regular L1 attributes, a sequenceNumber attribute is stored. This equals the L2 block number relative to the start of the epoch, i.e. the L2 block distance to the L2 block height that the L1 attributes last changed, and reset to 0 at the start of a new epoch.

The contract implements an authorization scheme, such that it only accepts state-changing calls from the depositor account.

The contract has the following solidity interface, and can be interacted with according to the contract ABI specification.

L1 Attributes Predeployed Contract: Reference Implementation

A reference implementation of the L1 Attributes predeploy contract can be found in L1Block.sol.

After running yarn build in the packages/contracts directory, the bytecode to add to the genesis file will be located in the deployedBytecode field of the build artifacts file at /packages/contracts/artifacts/contracts/L2/L1Block.sol/L1Block.json.

User-Deposited Transactions

User-deposited transactions are deposited transactions generated by the L2 Chain Derivation process. The content of each user-deposited transaction are determined by the corresponding TransactionDeposited event emitted by the [deposit feed contract][deposit-feed-contract] on L1.

  1. from is unchanged from the emitted value (though it may have been transformed to an alias in the deposit feed contract).
  2. to is any 20-byte address (including the zero address)
    • In case of a contract creation (cf. isCreation), this address is always zero.
  3. mint is set to the emitted value.
  4. value is set to the emitted value.
  5. gaslimit is unchanged from the emitted value.
  6. isCreation is set to true if the transaction is a contract creation, false otherwise.
  7. data is unchanged from the emitted value. Depending on the value of isCreation it is handled as either calldata or contract initialization code.

Deposit Contract

The deposit contract is deployed to L1. Deposited transactions are derived from the values in the TransactionDeposited event(s) emitted by the deposit contract.

The deposit contract handles two special cases:

  1. A contract creation deposit, which is indicated by setting the isCreation flag to true. In the event that the to address is non-zero, the contract will revert.
  2. A call from a contract account, in which case the from value is transformed to its L2 alias.

Address Aliasing

If the caller is a contract, the address will be transformed by adding 0x1111000000000000000000000000000000001111 to it. This is the reverse of the transformation described in the deposits spec. This prevents attacks in which a contract on L1 has the same address as a contract on L2 but doesn't have the same code. We can safely ignore this for EOAs because they're guaranteed to have the same "code" (i.e. no code at all). This also makes it possible for users to interact with contracts on L2 even when the Sequencer is down.

Deposit Feed Contract: Reference Implementation

A reference implementation of the Deposit Feed contract can be found in DepositFeed.sol.