forked from mitkotak/equiformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_qm9.py
299 lines (250 loc) · 13.1 KB
/
main_qm9.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import argparse
import datetime
import itertools
import pickle
import subprocess
import time
import torch
import numpy as np
from torch_geometric.loader import DataLoader
import os
from logger import FileLogger
from pathlib import Path
from datasets.pyg.qm9 import QM9
#from torch_geometric.datasets import QM9
#from torch_geometric.nn import SchNet
# AMP
from contextlib import suppress
from timm.utils import NativeScaler
import nets
from nets import model_entrypoint
from timm.utils import ModelEmaV2
from timm.scheduler import create_scheduler
from optim_factory import create_optimizer
from engine import train_one_epoch, evaluate, compute_stats
# distributed training
import utils
ModelEma = ModelEmaV2
def get_args_parser():
parser = argparse.ArgumentParser('Training equivariant networks', add_help=False)
parser.add_argument('--output-dir', type=str, default=None)
# network architecture
parser.add_argument('--model-name', type=str, default='transformer_ti')
parser.add_argument('--input-irreps', type=str, default=None)
parser.add_argument('--radius', type=float, default=2.0)
parser.add_argument('--num-basis', type=int, default=32)
parser.add_argument('--output-channels', type=int, default=1)
# training hyper-parameters
parser.add_argument("--epochs", type=int, default=300)
parser.add_argument("--batch-size", type=int, default=128)
parser.add_argument('--model-ema', action='store_true')
parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
parser.set_defaults(model_ema=True)
parser.add_argument('--model-ema-decay', type=float, default=0.9999, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
# regularization
parser.add_argument('--drop-path', type=float, default=0.0)
# optimizer (timm)
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.01,
help='weight decay (default: 0.01)')
# learning rate schedule parameters (timm)
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# logging
parser.add_argument("--print-freq", type=int, default=100)
# task
parser.add_argument("--target", type=int, default=7)
parser.add_argument("--data-path", type=str, default='data/qm9')
parser.add_argument('--feature-type', type=str, default='one_hot')
parser.add_argument('--compute-stats', action='store_true', dest='compute_stats')
parser.set_defaults(compute_stats=False)
parser.add_argument('--no-standardize', action='store_false', dest='standardize')
parser.set_defaults(standardize=True)
parser.add_argument('--loss', type=str, default='l1')
# random
parser.add_argument("--seed", type=int, default=0)
# data loader config
parser.add_argument("--workers", type=int, default=4)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# AMP
parser.add_argument('--no-amp', action='store_false', dest='amp',
help='Disable FP16 training.')
parser.set_defaults(amp=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def main(args):
utils.init_distributed_mode(args)
is_main_process = (args.rank == 0)
_log = FileLogger(is_master=is_main_process, is_rank0=is_main_process, output_dir=args.output_dir)
_log.info(args)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
''' Dataset '''
train_dataset = QM9(args.data_path, 'train', feature_type=args.feature_type)
val_dataset = QM9(args.data_path, 'valid', feature_type=args.feature_type)
test_dataset = QM9(args.data_path, 'test', feature_type=args.feature_type)
_log.info('Training set mean: {}, std:{}'.format(
train_dataset.mean(args.target), train_dataset.std(args.target)))
# calculate dataset stats
task_mean, task_std = 0, 1
if args.standardize:
task_mean, task_std = train_dataset.mean(args.target), train_dataset.std(args.target)
norm_factor = [task_mean, task_std]
# since dataset needs random
torch.manual_seed(args.seed)
np.random.seed(args.seed)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
''' Network '''
create_model = model_entrypoint(args.model_name)
model = create_model(irreps_in=args.input_irreps,
radius=args.radius, num_basis=args.num_basis,
out_channels=args.output_channels,
task_mean=task_mean,
task_std=task_std,
atomref=None, #train_dataset.atomref(args.target),
drop_path=args.drop_path)
_log.info(model)
model = model.to(device)
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else None)
# distributed training
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank])
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
_log.info('Number of params: {}'.format(n_parameters))
''' Optimizer and LR Scheduler '''
optimizer = create_optimizer(args, model)
lr_scheduler, _ = create_scheduler(args, optimizer)
criterion = None #torch.nn.MSELoss() #torch.nn.L1Loss() # torch.nn.MSELoss()
if args.loss == 'l1':
criterion = torch.nn.L1Loss()
elif args.loss == 'l2':
criterion = torch.nn.MSELoss()
else:
raise ValueError
''' AMP (from timm) '''
# setup automatic mixed-precision (AMP) loss scaling and op casting
amp_autocast = suppress # do nothing
loss_scaler = None
if args.amp:
amp_autocast = torch.cuda.amp.autocast
loss_scaler = NativeScaler()
''' Data Loader '''
if args.distributed:
sampler_train = torch.utils.data.DistributedSampler(
train_dataset, num_replicas=utils.get_world_size(), rank=utils.get_rank(), shuffle=True
)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size,
sampler=sampler_train, num_workers=args.workers, pin_memory=args.pin_mem,
drop_last=True)
else:
train_loader = DataLoader(train_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, pin_memory=args.pin_mem,
drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size)
''' Compute stats '''
if args.compute_stats:
compute_stats(train_loader, max_radius=args.radius, logger=_log, print_freq=args.print_freq)
return
best_epoch, best_train_err, best_val_err, best_test_err = 0, float('inf'), float('inf'), float('inf')
best_ema_epoch, best_ema_val_err, best_ema_test_err = 0, float('inf'), float('inf')
for epoch in range(args.epochs):
epoch_start_time = time.perf_counter()
lr_scheduler.step(epoch)
if args.distributed:
train_loader.sampler.set_epoch(epoch)
train_err = train_one_epoch(model=model, criterion=criterion, norm_factor=norm_factor,
target=args.target, data_loader=train_loader, optimizer=optimizer,
device=device, epoch=epoch, model_ema=model_ema,
amp_autocast=amp_autocast, loss_scaler=loss_scaler,
print_freq=args.print_freq, logger=_log)
val_err, val_loss = evaluate(model, norm_factor, args.target, val_loader, device,
amp_autocast=amp_autocast, print_freq=args.print_freq, logger=_log)
test_err, test_loss = evaluate(model, norm_factor, args.target, test_loader, device,
amp_autocast=amp_autocast, print_freq=args.print_freq, logger=_log)
# record the best results
if val_err < best_val_err:
best_val_err = val_err
best_test_err = test_err
best_train_err = train_err
best_epoch = epoch
info_str = 'Epoch: [{epoch}] Target: [{target}] train MAE: {train_mae:.5f}, '.format(
epoch=epoch, target=args.target, train_mae=train_err)
info_str += 'val MAE: {:.5f}, '.format(val_err)
info_str += 'test MAE: {:.5f}, '.format(test_err)
info_str += 'Time: {:.2f}s'.format(time.perf_counter() - epoch_start_time)
_log.info(info_str)
info_str = 'Best -- epoch={}, train MAE: {:.5f}, val MAE: {:.5f}, test MAE: {:.5f}\n'.format(
best_epoch, best_train_err, best_val_err, best_test_err)
_log.info(info_str)
# evaluation with EMA
if model_ema is not None:
ema_val_err, _ = evaluate(model_ema.module, norm_factor, args.target, val_loader, device,
amp_autocast=amp_autocast, print_freq=args.print_freq, logger=_log)
ema_test_err, _ = evaluate(model_ema.module, norm_factor, args.target, test_loader, device,
amp_autocast=amp_autocast, print_freq=args.print_freq, logger=_log)
# record the best results
if (ema_val_err) < best_ema_val_err:
best_ema_val_err = ema_val_err
best_ema_test_err = ema_test_err
best_ema_epoch = epoch
info_str = 'Epoch: [{epoch}] Target: [{target}] '.format(
epoch=epoch, target=args.target)
info_str += 'EMA val MAE: {:.5f}, '.format(ema_val_err)
info_str += 'EMA test MAE: {:.5f}, '.format(ema_test_err)
info_str += 'Time: {:.2f}s'.format(time.perf_counter() - epoch_start_time)
_log.info(info_str)
info_str = 'Best EMA -- epoch={}, val MAE: {:.5f}, test MAE: {:.5f}\n'.format(
best_ema_epoch, best_ema_val_err, best_ema_test_err)
_log.info(info_str)
if __name__ == "__main__":
parser = argparse.ArgumentParser('Training equivariant networks', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)