forked from mitkotak/equiformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_md17_dens.py
558 lines (467 loc) · 26.1 KB
/
main_md17_dens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
'''
1. We use batched denoising -- given a batch of examples, some of them are for the original task,
and the others are for denoising positions. The ratio is dependent on `--denoising-pos-prob`.
'''
import argparse
import datetime
import itertools
import pickle
import subprocess
import time
import torch
import numpy as np
import yaml
from torch_geometric.loader import DataLoader
import os
from logger import FileLogger
from pathlib import Path
from typing import Iterable, Optional
import datasets.pyg.md17 as md17_dataset
import nets
from nets import model_entrypoint
from timm.utils import ModelEmaV2, get_state_dict, dispatch_clip_grad
from timm.scheduler import create_scheduler
from optim_factory import create_optimizer
from engine import AverageMeter, compute_stats
# config
from ocpmodels.common.utils import load_config
from main_md17 import (
L2MAELoss,
update_best_results
)
ModelEma = ModelEmaV2
def get_args_parser():
parser = argparse.ArgumentParser('Training equivariant networks on MD17', add_help=False)
parser.add_argument('--output-dir', type=str, default=None)
# network architecture
# config for network architecture
parser.add_argument('--config-yml', type=str, default=None)
# training hyper-parameters
parser.add_argument("--epochs", type=int, default=1000)
parser.add_argument("--batch-size", type=int, default=8)
parser.add_argument("--eval-batch-size", type=int, default=8)
parser.add_argument('--model-ema', action='store_true')
parser.set_defaults(model_ema=False)
parser.add_argument('--model-ema-decay', type=float, default=0.9999, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
# optimizer (timm)
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=5e-3,
help='weight decay (default: 5e-3)')
# learning rate schedule parameters (timm)
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-6)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# logging
parser.add_argument("--print-freq", type=int, default=100)
# task and dataset
parser.add_argument("--target", type=str, default='aspirin')
parser.add_argument("--data-path", type=str, default='datasets/md17')
parser.add_argument("--train-size", type=int, default=950)
parser.add_argument("--val-size", type=int, default=50)
parser.add_argument('--compute-stats', action='store_true', dest='compute_stats')
parser.set_defaults(compute_stats=False)
parser.add_argument('--test-interval', type=int, default=10,
help='epoch interval to evaluate on the testing set')
parser.add_argument('--test-max-iter', type=int, default=1000,
help='max iteration to evaluate on the testing set')
parser.add_argument('--energy-weight', type=float, default=0.2)
parser.add_argument('--force-weight', type=float, default=0.8)
# denoising positions
parser.add_argument('--denoising-pos-prob', type=float, default=0.25)
parser.add_argument('--denoising-pos-weight', type=float, default=5, help='denoising positions coefficient')
parser.add_argument('--denoising-pos-std', type=float, default=0.1, help='std for each xyz component used for denoising')
parser.add_argument('--denoising-corrupt-ratio', type=float, default=None, help='the raio of atoms being corrupted')
parser.add_argument('--use-denoising-pos-weight-linear-decay', action='store_true')
parser.set_defaults(use_denoising_pos_weight_linear_decay=False)
parser.add_argument('--use-uncorrupted-force-encoding', action='store_true', help='encode forces even for uncorrupted atoms when we use --denoising-corrupt-ratio')
parser.set_defaults(use_uncorrupted_force_encoding=False)
# random
parser.add_argument("--seed", type=int, default=1)
# data loader config
parser.add_argument("--workers", type=int, default=4)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# evaluation
parser.add_argument('--checkpoint-path', type=str, default=None)
parser.add_argument('--evaluate', action='store_true', dest='evaluate')
parser.set_defaults(evaluate=False)
return parser
def main(args):
_log = FileLogger(is_master=True, is_rank0=True, output_dir=args.output_dir)
_log.info(args)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
''' Dataset '''
train_dataset, val_dataset, test_dataset = md17_dataset.get_md17_datasets(
root=os.path.join(args.data_path, args.target),
dataset_arg=args.target,
train_size=args.train_size, val_size=args.val_size, test_size=None,
seed=args.seed)
_log.info('')
_log.info('Training set size: {}'.format(len(train_dataset)))
_log.info('Validation set size: {}'.format(len(val_dataset)))
_log.info('Testing set size: {}\n'.format(len(test_dataset)))
# statistics
y = torch.cat([batch.y for batch in train_dataset], dim=0)
mean = float(y.mean())
std = float(y.std())
_log.info('Training set mean: {}, std: {}\n'.format(mean, std))
norm_factor = [mean, std]
# since dataset needs random
torch.manual_seed(args.seed)
np.random.seed(args.seed)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
''' Network '''
config, _, _ = load_config(args.config_yml)
_log.info(yaml.dump(config, default_flow_style=False))
model_config = config['model']
create_model = model_entrypoint(model_config.pop('name'))
model = create_model(**model_config)
_log.info(model)
if args.checkpoint_path is not None:
state_dict = torch.load(args.checkpoint_path, map_location='cpu')
model.load_state_dict(state_dict['state_dict'])
model = model.to(device)
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else None)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
_log.info('Number of params: {}'.format(n_parameters))
''' Optimizer and LR Scheduler '''
optimizer = create_optimizer(args, model)
lr_scheduler, _ = create_scheduler(args, optimizer)
criterion = L2MAELoss() #torch.nn.L1Loss() #torch.nn.MSELoss() # torch.nn.L1Loss()
''' Data Loader '''
train_loader = DataLoader(train_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, pin_memory=args.pin_mem,
drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=args.eval_batch_size, num_workers=args.workers, pin_memory=args.pin_mem)
test_loader = DataLoader(test_dataset, batch_size=args.eval_batch_size, num_workers=args.workers, pin_memory=args.pin_mem)
''' Compute stats '''
if args.compute_stats:
compute_stats(train_loader, max_radius=args.radius, logger=_log, print_freq=args.print_freq)
return
# record the best validation and testing errors and corresponding epochs
best_metrics = {
'val_epoch': 0, 'test_epoch': 0,
'val_force_err': float('inf'), 'val_energy_err': float('inf'),
'test_force_err': float('inf'), 'test_energy_err': float('inf')
}
best_ema_metrics = {
'val_epoch': 0, 'test_epoch': 0,
'val_force_err': float('inf'), 'val_energy_err': float('inf'),
'test_force_err': float('inf'), 'test_energy_err': float('inf')
}
if args.evaluate:
test_err, test_loss = evaluate(args=args, model=model, criterion=criterion,
norm_factor=norm_factor,
data_loader=test_loader, device=device,
print_freq=args.print_freq, logger=_log, print_progress=True, max_iter=-1)
return
for epoch in range(args.epochs):
epoch_start_time = time.perf_counter()
lr_scheduler.step(epoch)
train_func = train_one_epoch
train_err, train_loss = train_func(args=args, model=model, criterion=criterion,
norm_factor=norm_factor,
data_loader=train_loader, optimizer=optimizer,
device=device, epoch=epoch, model_ema=model_ema,
print_freq=args.print_freq, logger=_log)
val_err, val_loss = evaluate(args=args, model=model, criterion=criterion,
norm_factor=norm_factor,
data_loader=val_loader, device=device,
print_freq=args.print_freq, logger=_log, print_progress=False)
if (epoch + 1) % args.test_interval == 0:
test_err, test_loss = evaluate(args=args, model=model, criterion=criterion,
norm_factor=norm_factor,
data_loader=test_loader, device=device,
print_freq=args.print_freq, logger=_log, print_progress=True, max_iter=args.test_max_iter)
else:
test_err, test_loss = None, None
update_val_result, update_test_result = update_best_results(args, best_metrics, val_err, test_err, epoch)
if update_val_result:
torch.save(
{'state_dict': model.state_dict()},
os.path.join(args.output_dir,
'best_val_epochs@{}_e@{:.4f}_f@{:.4f}.pth.tar'.format(epoch, val_err['energy'].avg, val_err['force'].avg))
)
if update_test_result:
torch.save(
{'state_dict': model.state_dict()},
os.path.join(args.output_dir,
'best_test_epochs@{}_e@{:.4f}_f@{:.4f}.pth.tar'.format(epoch, test_err['energy'].avg, test_err['force'].avg))
)
if (epoch + 1) % args.test_interval == 0 and (not update_val_result) and (not update_test_result):
torch.save(
{'state_dict': model.state_dict()},
os.path.join(args.output_dir,
'epochs@{}_e@{:.4f}_f@{:.4f}.pth.tar'.format(epoch, test_err['energy'].avg, test_err['force'].avg))
)
info_str = 'Epoch: [{epoch}] Target: [{target}] train_e_MAE: {train_e_mae:.5f}, train_f_MAE: {train_f_mae:.5f}, train_denoising_pos_MAE: {train_denoising_pos_mae:.5f}, '.format(
epoch=epoch, target=args.target,
train_e_mae=train_err['energy'].avg, train_f_mae=train_err['force'].avg, train_denoising_pos_mae=train_err['denoising_pos'].avg
)
info_str += 'val_e_MAE: {:.5f}, val_f_MAE: {:.5f}, '.format(val_err['energy'].avg, val_err['force'].avg)
if (epoch + 1) % args.test_interval == 0:
info_str += 'test_e_MAE: {:.5f}, test_f_MAE: {:.5f}, '.format(test_err['energy'].avg, test_err['force'].avg)
info_str += 'Time: {:.2f}s'.format(time.perf_counter() - epoch_start_time)
_log.info(info_str)
info_str = 'Best -- val_epoch={}, test_epoch={}, '.format(best_metrics['val_epoch'], best_metrics['test_epoch'])
info_str += 'val_e_MAE: {:.5f}, val_f_MAE: {:.5f}, '.format(best_metrics['val_energy_err'], best_metrics['val_force_err'])
info_str += 'test_e_MAE: {:.5f}, test_f_MAE: {:.5f}\n'.format(best_metrics['test_energy_err'], best_metrics['test_force_err'])
_log.info(info_str)
# evaluation with EMA
if model_ema is not None:
ema_val_err, _ = evaluate(args=args, model=model_ema.module, criterion=criterion,
norm_factor=norm_factor,
data_loader=val_loader, device=device,
print_freq=args.print_freq, logger=_log, print_progress=False)
if (epoch + 1) % args.test_interval == 0:
ema_test_err, _ = evaluate(args=args, model=model_ema.module, criterion=criterion,
norm_factor=norm_factor,
data_loader=test_loader, device=device,
print_freq=args.print_freq, logger=_log, print_progress=True, max_iter=args.test_max_iter)
else:
ema_test_err, ema_test_loss = None, None
update_val_result, update_test_result = update_best_results(args, best_ema_metrics, ema_val_err, ema_test_err, epoch)
if update_val_result:
torch.save(
{'state_dict': get_state_dict(model_ema)},
os.path.join(args.output_dir,
'best_ema_val_epochs@{}_e@{:.4f}_f@{:.4f}.pth.tar'.format(epoch, ema_val_err['energy'].avg, ema_val_err['force'].avg))
)
if update_test_result:
torch.save(
{'state_dict': get_state_dict(model_ema)},
os.path.join(args.output_dir,
'best_ema_test_epochs@{}_e@{:.4f}_f@{:.4f}.pth.tar'.format(epoch, ema_test_err['energy'].avg, ema_test_err['force'].avg))
)
if (epoch + 1) % args.test_interval == 0 and (not update_val_result) and (not update_test_result):
torch.save(
{'state_dict': get_state_dict(model_ema)},
os.path.join(args.output_dir,
'ema_epochs@{}_e@{:.4f}_f@{:.4f}.pth.tar'.format(epoch, test_err['energy'].avg, test_err['force'].avg))
)
info_str = 'EMA '
info_str += 'val_e_MAE: {:.5f}, val_f_MAE: {:.5f}, '.format(ema_val_err['energy'].avg, ema_val_err['force'].avg)
if (epoch + 1) % args.test_interval == 0:
info_str += 'test_e_MAE: {:.5f}, test_f_MAE: {:.5f}, '.format(ema_test_err['energy'].avg, ema_test_err['force'].avg)
info_str += 'Time: {:.2f}s'.format(time.perf_counter() - epoch_start_time)
_log.info(info_str)
info_str = 'Best EMA -- val_epoch={}, test_epoch={}, '.format(best_ema_metrics['val_epoch'], best_ema_metrics['test_epoch'])
info_str += 'val_e_MAE: {:.5f}, val_f_MAE: {:.5f}, '.format(best_ema_metrics['val_energy_err'], best_ema_metrics['val_force_err'])
info_str += 'test_e_MAE: {:.5f}, test_f_MAE: {:.5f}\n'.format(best_ema_metrics['test_energy_err'], best_ema_metrics['test_force_err'])
_log.info(info_str)
# evaluate on the whole testing set
test_err, test_loss = evaluate(args=args, model=model, criterion=criterion,
norm_factor=norm_factor,
data_loader=test_loader, device=device,
print_freq=args.print_freq, logger=_log, print_progress=True, max_iter=-1)
def train_one_epoch(args,
model: torch.nn.Module, criterion: torch.nn.Module,
norm_factor: list,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int,
model_ema: Optional[ModelEma] = None,
print_freq: int = 100,
logger=None):
model.train()
criterion.train()
loss_metrics = {'energy': AverageMeter(), 'force': AverageMeter(), 'denoising_pos': AverageMeter()}
mae_metrics = {'energy': AverageMeter(), 'force': AverageMeter(), 'denoising_pos': AverageMeter()}
start_time = time.perf_counter()
task_mean = norm_factor[0]
task_std = norm_factor[1]
energy_weight = args.energy_weight
force_weight = args.force_weight
# update denoising pos weight
if args.use_denoising_pos_weight_linear_decay:
# linearly decay denoising pos weight to 0
# throughout the whole training procedure
denoising_pos_weight = args.denoising_pos_weight * (1 - min(1.0, ((epoch + 0.0) / args.epochs)))
else:
denoising_pos_weight = args.denoising_pos_weight
for step, data in enumerate(data_loader):
data = data.to(device)
data = add_masked_gaussian_noise_to_pos(
data,
std=args.denoising_pos_std,
prob=args.denoising_pos_prob,
corrupt_ratio=args.denoising_corrupt_ratio
)
pred_y, pred_dy = model(data)
loss_e = criterion(pred_y, ((data.y - task_mean) / task_std))
loss_f = criterion(
pred_dy[(~data.noise_mask)],
(data.dy[(~data.noise_mask)] / task_std)
)
loss_denoising_pos = criterion(
pred_dy[(data.noise_mask)],
data.noise_vec[(data.noise_mask)] / args.denoising_pos_std
)
loss = energy_weight * loss_e
if not loss_f.isnan():
loss = loss + force_weight * loss_f
if not loss_denoising_pos.isnan():
loss = loss + denoising_pos_weight * loss_denoising_pos
optimizer.zero_grad()
loss.backward()
if args.clip_grad is not None:
dispatch_clip_grad(model.parameters(), value=args.clip_grad, mode='norm')
optimizer.step()
loss_metrics['energy'].update(loss_e.item(), n=pred_y.shape[0])
if not loss_f.isnan():
loss_metrics['force'].update(loss_f.item(), n=pred_dy[~(data.noise_mask)].shape[0])
if not loss_denoising_pos.isnan():
loss_metrics['denoising_pos'].update(loss_denoising_pos.item(), n=pred_dy[(data.noise_mask)].shape[0])
energy_err = pred_y.detach() * task_std + task_mean - data.y
energy_err = torch.mean(torch.abs(energy_err)).item()
mae_metrics['energy'].update(energy_err, n=pred_y.shape[0])
if not loss_f.isnan():
force_err = pred_dy.detach() * task_std - data.dy
force_err = torch.mean(torch.abs(force_err[(~data.noise_mask)])).item() # based on OC20 and TorchMD-Net, they average over x, y, z
mae_metrics['force'].update(force_err, n=pred_dy[~(data.noise_mask)].shape[0])
if not loss_denoising_pos.isnan():
denoising_pos_err = pred_dy.detach() * args.denoising_pos_std - data.noise_vec
denoising_pos_err = torch.mean(torch.abs(denoising_pos_err[data.noise_mask])).item() # same as calculating force MAE
mae_metrics['denoising_pos'].update(denoising_pos_err, n=pred_dy[data.noise_mask].shape[0])
if model_ema is not None:
model_ema.update(model)
torch.cuda.synchronize()
# logging
if step % print_freq == 0 or step == len(data_loader) - 1:
w = time.perf_counter() - start_time
e = (step + 1) / len(data_loader)
info_str = 'Epoch: [{epoch}][{step}/{length}] \t'.format(epoch=epoch, step=step, length=len(data_loader))
info_str += 'loss_e: {loss_e:.5f}, loss_f: {loss_f:.5f}, loss_denoising_pos: {loss_denoising_pos:.5f}, e_MAE: {e_mae:.5f}, f_MAE: {f_mae:.5f}, denoising_pos_MAE: {denoising_pos_mae:.5f}, '.format(
loss_e=loss_metrics['energy'].avg, loss_f=loss_metrics['force'].avg, loss_denoising_pos=loss_metrics['denoising_pos'].avg,
e_mae=mae_metrics['energy'].avg, f_mae=mae_metrics['force'].avg, denoising_pos_mae=mae_metrics['denoising_pos'].avg
)
info_str += 'time/step={time_per_step:.0f}ms, '.format(
time_per_step=(1e3 * w / e / len(data_loader))
)
info_str += 'lr={:.2e}, '.format(optimizer.param_groups[0]["lr"])
info_str += 'denoising_pos_weight={:.2e}'.format(denoising_pos_weight)
logger.info(info_str)
return mae_metrics, loss_metrics
def evaluate(args,
model: torch.nn.Module, criterion: torch.nn.Module,
norm_factor: list,
data_loader: Iterable,
device: torch.device,
print_freq: int = 100,
logger=None,
print_progress=False,
max_iter=-1):
model.eval()
criterion.eval()
loss_metrics = {'energy': AverageMeter(), 'force': AverageMeter()}
mae_metrics = {'energy': AverageMeter(), 'force': AverageMeter()}
start_time = time.perf_counter()
task_mean = norm_factor[0]
task_std = norm_factor[1]
with torch.no_grad():
for step, data in enumerate(data_loader):
data = data.to(device)
pred_y, pred_dy = model(data)
loss_e = criterion(pred_y, ((data.y - task_mean) / task_std))
loss_e = loss_e.item()
loss_f = criterion(pred_dy, (data.dy / task_std))
loss_f = loss_f.item()
loss_metrics['energy'].update(loss_e, n=pred_y.shape[0])
loss_metrics['force'].update(loss_f, n=pred_dy.shape[0])
energy_err = pred_y.detach() * task_std + task_mean - data.y
energy_err = torch.mean(torch.abs(energy_err)).item()
mae_metrics['energy'].update(energy_err, n=pred_y.shape[0])
force_err = pred_dy.detach() * task_std - data.dy
force_err = torch.mean(torch.abs(force_err)).item() # based on OC20 and TorchMD-Net, they average over x, y, z
mae_metrics['force'].update(force_err, n=pred_dy.shape[0])
# logging
if (step % print_freq == 0 or step == len(data_loader) - 1) and print_progress:
w = time.perf_counter() - start_time
e = (step + 1) / len(data_loader)
info_str = '[{step}/{length}] \t'.format(step=step, length=len(data_loader))
info_str += 'e_MAE: {e_mae:.5f}, f_MAE: {f_mae:.5f}, '.format(
e_mae=mae_metrics['energy'].avg, f_mae=mae_metrics['force'].avg,
)
info_str += 'time/step={time_per_step:.0f}ms'.format(
time_per_step=(1e3 * w / e / len(data_loader))
)
logger.info(info_str)
if ((step + 1) >= max_iter) and (max_iter != -1):
break
return mae_metrics, loss_metrics
def add_masked_gaussian_noise_to_pos(data, std, prob, corrupt_ratio=None):
'''
1. Update `pos` in `data`.
2. Add `noise_vec` to `data`, which will serve as the target for denoising positions.
3. Add `denoising_pos_mask` to specify which examples in the batch use denoising positions.
4. When `corrupt_ratio` is not None, we only add noises to a subset of atoms.
'''
data.pos.requires_grad = False
# sample which examples use denoising pos
batch_size = data.batch.max() + 1
denoising_pos_mask = torch.rand(batch_size, dtype=data.pos.dtype, device=data.pos.device)
denoising_pos_mask = (denoising_pos_mask < prob)
denoising_pos_mask = denoising_pos_mask[data.batch]
data.denoising_pos_mask = denoising_pos_mask
data.noise_mask = data.denoising_pos_mask
# for corrupting a subset of atoms
if corrupt_ratio is not None:
corrupt_mask = torch.rand((data.pos.shape[0]), dtype=data.pos.dtype, device=data.pos.device)
corrupt_mask = (corrupt_mask < corrupt_ratio)
data.corrupt_mask = corrupt_mask
data.noise_mask = data.noise_mask * data.corrupt_mask
# for force encoding
data.force = data.dy.clone()
data.force[(~data.noise_mask)] *= 0 # only encode forces for corrupted atoms
# sampling noises
noise_vec = torch.zeros_like(data.pos)
noise_vec = noise_vec.normal_(mean=0.0, std=std)
data.pos[data.noise_mask] = data.pos[data.noise_mask] + noise_vec[data.noise_mask]
data.noise_vec = noise_vec
return data
if __name__ == "__main__":
parser = argparse.ArgumentParser('Training equivariant networks on MD17', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)