forked from mitkotak/equiformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
executable file
·176 lines (138 loc) · 6.19 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import torch
from typing import Iterable, Optional
from timm.utils import accuracy, ModelEmaV2, dispatch_clip_grad
import time
from torch_cluster import radius_graph
import torch_geometric
ModelEma = ModelEmaV2
class AverageMeter:
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
norm_factor: list,
target: int,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int,
model_ema: Optional[ModelEma] = None,
amp_autocast=None,
loss_scaler=None,
clip_grad=None,
print_freq: int = 100,
logger=None):
model.train()
criterion.train()
loss_metric = AverageMeter()
mae_metric = AverageMeter()
start_time = time.perf_counter()
task_mean = norm_factor[0] #model.task_mean
task_std = norm_factor[1] #model.task_std
#atomref = dataset.atomref()
#if atomref is None:
# atomref = torch.zeros(100, 1)
#atomref = atomref.to(device)
for step, data in enumerate(data_loader):
data = data.to(device)
#data.edge_d_index = radius_graph(data.pos, r=10.0, batch=data.batch, loop=True)
#data.edge_d_attr = data.edge_attr
with amp_autocast():
pred = model(f_in=data.x, pos=data.pos, batch=data.batch,
node_atom=data.z,
edge_d_index=data.edge_d_index, edge_d_attr=data.edge_d_attr)
pred = pred.squeeze()
#loss = (pred - data.y[:, target])
#loss = loss.pow(2).mean()
#atomref_value = atomref(data.z)
loss = criterion(pred, (data.y[:, target] - task_mean) / task_std)
optimizer.zero_grad()
if loss_scaler is not None:
loss_scaler(loss, optimizer, parameters=model.parameters())
else:
loss.backward()
if clip_grad is not None:
dispatch_clip_grad(model.parameters(),
value=clip_grad, mode='norm')
optimizer.step()
#err = (pred.detach() * task_std + task_mean) - data.y[:, target]
#err_list += [err.cpu()]
loss_metric.update(loss.item(), n=pred.shape[0])
err = pred.detach() * task_std + task_mean - data.y[:, target]
mae_metric.update(torch.mean(torch.abs(err)).item(), n=pred.shape[0])
if model_ema is not None:
model_ema.update(model)
torch.cuda.synchronize()
# logging
if step % print_freq == 0 or step == len(data_loader) - 1: #time.perf_counter() - wall_print > 15:
w = time.perf_counter() - start_time
e = (step + 1) / len(data_loader)
info_str = 'Epoch: [{epoch}][{step}/{length}] \t loss: {loss:.5f}, MAE: {mae:.5f}, time/step={time_per_step:.0f}ms, '.format(
epoch=epoch, step=step, length=len(data_loader),
mae=mae_metric.avg,
loss=loss_metric.avg,
time_per_step=(1e3 * w / e / len(data_loader))
)
info_str += 'lr={:.2e}'.format(optimizer.param_groups[0]["lr"])
logger.info(info_str)
return mae_metric.avg
def evaluate(model, norm_factor, target, data_loader, device, amp_autocast=None,
print_freq=100, logger=None):
model.eval()
loss_metric = AverageMeter()
mae_metric = AverageMeter()
criterion = torch.nn.L1Loss()
criterion.eval()
task_mean = norm_factor[0] #model.task_mean
task_std = norm_factor[1] #model.task_std
with torch.no_grad():
for data in data_loader:
data = data.to(device)
#data.edge_d_index = radius_graph(data.pos, r=10.0, batch=data.batch, loop=True)
#data.edge_d_attr = data.edge_attr
with amp_autocast():
pred = model(f_in=data.x, pos=data.pos, batch=data.batch,
node_atom=data.z,
edge_d_index=data.edge_d_index, edge_d_attr=data.edge_d_attr)
pred = pred.squeeze()
loss = criterion(pred, (data.y[:, target] - task_mean) / task_std)
loss_metric.update(loss.item(), n=pred.shape[0])
err = pred.detach() * task_std + task_mean - data.y[:, target]
mae_metric.update(torch.mean(torch.abs(err)).item(), n=pred.shape[0])
return mae_metric.avg, loss_metric.avg
def compute_stats(data_loader, max_radius, logger, print_freq=1000):
'''
Compute mean of numbers of nodes and edges
'''
log_str = '\nCalculating statistics with '
log_str = log_str + 'max_radius={}\n'.format(max_radius)
logger.info(log_str)
avg_node = AverageMeter()
avg_edge = AverageMeter()
avg_degree = AverageMeter()
for step, data in enumerate(data_loader):
pos = data.pos
batch = data.batch
edge_src, edge_dst = radius_graph(pos, r=max_radius, batch=batch,
max_num_neighbors=1000)
batch_size = float(batch.max() + 1)
num_nodes = pos.shape[0]
num_edges = edge_src.shape[0]
num_degree = torch_geometric.utils.degree(edge_src, num_nodes)
num_degree = torch.sum(num_degree)
avg_node.update(num_nodes / batch_size, batch_size)
avg_edge.update(num_edges / batch_size, batch_size)
avg_degree.update(num_degree / (num_nodes), num_nodes)
if step % print_freq == 0 or step == (len(data_loader) - 1):
log_str = '[{}/{}]\tavg node: {}, '.format(step, len(data_loader), avg_node.avg)
log_str += 'avg edge: {}, '.format(avg_edge.avg)
log_str += 'avg degree: {}, '.format(avg_degree.avg)
logger.info(log_str)