Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

How to convert data format #8

Open
kahvia1244 opened this issue May 9, 2024 · 3 comments
Open

How to convert data format #8

kahvia1244 opened this issue May 9, 2024 · 3 comments

Comments

@kahvia1244
Copy link

I want to use this data set to achieve target detection. I want to get the label box of each instance (such as vehicles, pedestrians). How do I convert it? I want the format of VOC or COCO. If there is a YOLO format, that would be more alright

@XuShenLZ
Copy link
Contributor

XuShenLZ commented May 9, 2024

Hi, I think you might want to have the raw video & annotation format of the data. Have you requested it? https://sites.google.com/berkeley.edu/dlp-dataset

@kahvia1244
Copy link
Author

您好,我想您可能想要数据的原始视频和注释格式。你要求了吗?https://sites.google.com/berkeley.edu/dlp-dataset
Yes, I have requested the dataset and I have received a download link for the dataset, but I don't quite understand the meaning of the content in the annotation files for these datasets and I don't know how to use it

@XuShenLZ
Copy link
Contributor

Sorry we don't provide any code to process the raw video & annotation format of the data, However, I believe that the XML file should be easy to interpret. For example, the following rows describe two vehicles at frame 0.

<tracking_log>
    <frame id="0" timestamp="0.000000">
        <trajectory id="1" type="Car" width="2.1613" length="4.5655" utm_x="746952.76" utm_y="3856823.94" utm_angle="4.7437" speed="0.00" lateral_acceleration="0.0000" tangential_acceleration="0.0000" total_acceleration="0.0000" front_left_x="3321.38" front_left_y="1725.74" front_right_x="3397.30" front_right_y="1721.60" rear_left_x="3326.60" rear_left_y="1886.09" rear_right_x="3402.52" rear_right_y="1881.85" front_left_x_undistorted="3317.51" front_left_y_undistorted="1728.82" front_right_x_undistorted="3393.80" front_right_y_undistorted="1725.24" rear_left_x_undistorted="3324.19" rear_left_y_undistorted="1890.92" rear_right_x_undistorted="3400.53" rear_right_y_undistorted="1887.28"/>
        <trajectory id="2" type="Car" width="2.1341" length="4.6388" utm_x="746958.03" utm_y="3856823.98" utm_angle="4.7354" speed="0.00" lateral_acceleration="0.0000" tangential_acceleration="0.0000" total_acceleration="0.0000" front_left_x="3136.52" front_left_y="1729.51" front_right_x="3211.80" front_right_y="1726.09" rear_left_x="3140.47" rear_left_y="1892.73" rear_right_x="3215.74" rear_right_y="1889.21" front_left_x_undistorted="3131.97" front_left_y_undistorted="1731.24" front_right_x_undistorted="3207.45" front_right_y_undistorted="1728.33" rear_left_x_undistorted="3137.27" rear_left_y_undistorted="1896.15" rear_right_x_undistorted="3212.80" rear_right_y_undistorted="1893.18"/>

There is also transformation matrix at the end of each frame to transform between image and utm coordinates

        <raw_to_map_transform image_id="0" cols="3" rows="3">
            <row_0 val_0="-3.4521392297664617" val_1="3.379297215674177" val_2="747677.70416361105"/>
            <row_1 val_0="-17.67920643202228" val_1="17.475174131973677" val_2="3860030.1877205535"/>
            <row_2 val_0="-4.5839916216011457e-06" val_1="4.5237260954759028e-06" val_2="1.000844809535552"/>
        </raw_to_map_transform>

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants