-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdynunet.py
184 lines (159 loc) · 6.31 KB
/
dynunet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import pytorch_lightning as pl
import torch
from monai.inferers import sliding_window_inference
from monai.losses import DiceCELoss
from monai.metrics import ConfusionMatrixMetric, DiceMetric
from monai.networks.nets import DynUNet
# from autopet3.datacentric.utils import PolyLRScheduler
from autopet3.fixed.evaluation import AutoPETMetricAggregator
class NNUnet(pl.LightningModule):
def __init__(self, learning_rate: float = 1e-3, sw_batch_size: int = 2):
"""Initialize the class with the given learning rate and sliding window batch size.
Args:
learning_rate (float): The learning rate for the model.
sw_batch_size (int): The batch size for sliding window inference.
Returns:
None
"""
super().__init__()
self.scheduler = True
self.scheduler_type = "polylr"
self.scheduler_steps = None
self.deep_supervision = True
self.kernels = [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]]
self.strides = [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 1]]
self.patch_size = (128, 160, 112)
self.sw_mode = "constant"
self.sw_batch_size = sw_batch_size
self.sw_overlap = 0.5
self.backbone = DynUNet(
spatial_dims=3,
in_channels=2,
out_channels=1,
kernel_size=self.kernels,
strides=self.strides,
upsample_kernel_size=self.strides[1:],
norm_name="instance",
act_name=("leakyrelu", {"inplace": False, "negative_slope": 0.01}),
deep_supervision=self.deep_supervision,
deep_supr_num=3,
res_block=True,
)
self.learning_rate = learning_rate
self.steps = None
# formulated as DiceBCE and batch is True according to 3d_fullres plans
self.loss_fn = DiceCELoss(sigmoid=True, batch=True, include_background=True)
self.dice_metric = DiceMetric(include_background=False, reduction="mean", get_not_nans=False, ignore_empty=True)
self.confusion = ConfusionMatrixMetric(reduction="mean", metric_name="f1 score")
self.test_aggregator = AutoPETMetricAggregator()
self.train_loss = []
self.val_loss = []
self.val_dice = []
def forward(self, volume):
# return prediction
pred = self.sliding_window_inference(volume)
return torch.ge(torch.sigmoid(pred), 0.5)
def forward_sigmoid(self, volume):
# return sigmoid
pred = self.sliding_window_inference(volume)
return torch.sigmoid(pred)
def forward_logits(self, volume):
# return logits
pred = self.sliding_window_inference(volume)
return pred
def compute_loss(self, prediction, label):
if self.deep_supervision:
loss, weights = 0.0, 0.0
for i in range(prediction.shape[1]):
loss += self.loss_fn(prediction[:, i], label) * 0.5**i
weights += 0.5**i
return loss / weights
return self.loss_fn(prediction, label)
def training_step(self, batch, batch_idx):
volume, label = batch
prediction = self.backbone(volume)
loss = self.compute_loss(prediction, label)
self.log(
"train/loss",
loss,
on_step=True,
on_epoch=True,
prog_bar=True,
sync_dist=True,
)
self.train_loss.append(loss.item())
return loss
def validation_step(self, batch, batch_idx):
volume, label = batch
prediction = self.sliding_window_inference(volume)
loss = self.loss_fn(prediction, label)
prediction = torch.ge(torch.sigmoid(prediction), 0.5)
self.dice_metric(y_pred=prediction, y=label)
self.confusion(y_pred=prediction, y=label)
self.log(
"val/loss",
loss,
on_step=False,
on_epoch=True,
prog_bar=True,
sync_dist=True,
)
return loss
def on_validation_epoch_end(self):
mean_val_dice = self.dice_metric.aggregate().item()
self.val_dice.append(mean_val_dice)
self.dice_metric.reset()
self.log(
"val/dice",
mean_val_dice,
on_epoch=True,
prog_bar=True,
sync_dist=True,
)
mean_fp = self.confusion.aggregate()[0].item()
self.confusion.reset()
self.log(
"val/f1",
mean_fp,
on_epoch=True,
prog_bar=True,
sync_dist=True,
)
return {"val/dice": mean_val_dice, "val/f1": mean_fp}
def test_step(self, batch, batch_idx):
volume, label = batch
pred = self.forward(volume)
assert volume.shape[0] == 1, "Test step just works for batch size 1"
self.log_dict(self.test_aggregator.update(pred.cpu().numpy(), label.cpu().numpy()))
def on_test_end(self):
results = self.test_aggregator.compute()
print(results)
return results
def set_scheduler_steps(self, steps):
# fallback if trainer is not used
self.steps = steps
def configure_optimizers(self):
# Define the optimizer
optimizer = torch.optim.SGD(
self.backbone.parameters(), self.learning_rate, weight_decay=3e-5, momentum=0.99, nesterov=True
)
# Set the scheduler steps based on the trainer or steps if not using a Lightning trainer
if hasattr(self, "trainer"):
self.scheduler_steps = self.trainer.max_epochs
else:
assert hasattr(
self, "steps"
), "You're not using a Lightning trainer. Please set the number of epochs in self.set_scheduler_steps(epochs)"
self.scheduler_steps = self.steps
# Define the learning rate scheduler (same as original nnUNet PolyLRScheduler)
scheduler = torch.optim.lr_scheduler.PolynomialLR(optimizer, total_iters=self.scheduler_steps, power=0.9)
return [optimizer], [scheduler]
def sliding_window_inference(self, image):
return sliding_window_inference(
inputs=image,
roi_size=self.patch_size,
sw_batch_size=self.sw_batch_size,
predictor=self.backbone,
overlap=self.sw_overlap,
mode=self.sw_mode,
)