-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrun.py
38 lines (31 loc) · 1012 Bytes
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from utils import general
from models import models
data_dir = "D:\Data\DIRLAB\DIRLAB_clean"
out_dir = "D:\Data\DIRLAB\outtest"
case_id = 8
(
img_insp,
img_exp,
landmarks_insp,
landmarks_exp,
mask_exp,
voxel_size,
) = general.load_image_DIRLab(case_id, "{}\Case".format(data_dir))
kwargs = {}
kwargs["verbose"] = False
kwargs["hyper_regularization"] = False
kwargs["jacobian_regularization"] = False
kwargs["bending_regularization"] = True
kwargs["network_type"] = "SIREN" # Options are "MLP" and "SIREN"
kwargs["save_folder"] = out_dir + str(case_id)
kwargs["mask"] = mask_exp
ImpReg = models.ImplicitRegistrator(img_exp, img_insp, **kwargs)
ImpReg.fit()
new_landmarks_orig, _ = general.compute_landmarks(
ImpReg.network, landmarks_insp, image_size=img_insp.shape
)
print(voxel_size)
accuracy_mean, accuracy_std = general.compute_landmark_accuracy(
new_landmarks_orig, landmarks_exp, voxel_size=voxel_size
)
print("{} {} {}".format(case_id, accuracy_mean, accuracy_std))