-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.m
172 lines (142 loc) · 4.83 KB
/
main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This is the demo file of the method proposed in the
% following reference:
%
% R.Isono, K. Naganuma, and S. Ono
% ``Robust Spatiotemporal Fusion of Satellite Images: A Constrained Convex Optimization Approach.''
%
% Update history:
% Jan 25, 2024: v1.0
%
% Copyright (c) 2023 Ryosuke Isono, Kazuki Naganuma, and Shunsuke Ono
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% use GPU or not
params.use_GPU = 0; % 0 if you do not use GPU, 1 if you use GPU
%% Adding path
addpath(genpath('./sub_functions'));
for p = [1 2]
for site_idx = [1 2]
for datatype_idx = [1 2]
for nsigh = [0 0.05]
for sprateh = [0 0.05]
%% Loading data
% choosing data
if site_idx == 1
site = 'Site1'; % 'Site1' or 'Site2'
elseif site_idx == 2
site = 'Site2';
end
if datatype_idx == 1
datatype = 'Sim';
elseif datatype_idx == 2
datatype = 'Real';
end
nsigl = 0; % standard deviation of Gaussian noise on LR images
spratel = 0; % superimposition ratio of sparse noise on LR images
% loading data
data_file = append('dataset/',site,'/',datatype,'/');
data_file = append(data_file,'nsigh=',num2str(nsigh));
data_file = append(data_file,'_nsigl=',num2str(nsigl));
data_file = append(data_file,'_sprateh=',num2str(sprateh));
data_file = append(data_file,'_spratel=',num2str(spratel));
data_file = append(data_file,'.mat');
load(data_file)
observed.Hr = Hr;
observed.Lr = Lr;
observed.Lt = Lt;
groundtruth.Hr_GT = Hr_GT;
groundtruth.Ht_GT = Ht_GT;
groundtruth.Lr_GT = Lr_GT;
groundtruth.Lt_GT = Lt_GT;
% getting the size of the images
nH = numel(Hr_GT);
nL = numel(Lr_GT);
[rowsH, colsH, chans] = size(Hr_GT);
[rowsL, colsL, chans] = size(Lr_GT);
nHc = rowsH*colsH;
nLc = rowsL*colsL;
%% Setting parameters
% the way of downsampling
params.hsize = 20; % size of averaging filter as a blurring operator
params.window = 20; % size of downsampling window
params.downsampleloc = 'c'; % location of the pixel taken when downsampling ('lt': lefttop or 'c': center)
B = @(z) UB(z,params.hsize,params.use_GPU);
Bt = @(z) UBt(z,params.hsize,params.use_GPU);
SB = @(z) S(B(z),params.window,params.downsampleloc);
BtSt = @(z) Bt(St(z,params.window,params.downsampleloc,params.use_GPU));
% the balancing parameter
params.lambda = 1;
% calculating edge similarity using the p-norm
params.p = p;
% the 1st constraint
if params.p == 1
params.alpha_coef = 0.002; % recommend 0.002 when p=1
elseif params.p == 2
params.alpha_coef = 10^(-6); % recommend 10^(-6) when p=2
end
params.alpha = params.alpha_coef * nH;
% the 2nd constraint
params.beta = zeros(1,1,chans);
params.c = zeros(1,1,chans);
params.low = zeros(1,1,chans);
params.high = zeros(1,1,chans);
for chan = 1 : chans
mLr = mean(Lr(:,:,chan),'all');
mHr = mean(Hr(:,:,chan),'all');
mLt = mean(Lt(:,:,chan),'all');
params.beta(1,1,chan) = abs(mLr - mHr);
params.c(1,1,chan) = mLt - (0.5 - mLt) * spratel;
params.low(1,1,chan) = (params.c(1,1,chan) - params.beta(1,1,chan))*nHc;
params.high(1,1,chan) = (params.c(1,1,chan) + params.beta(1,1,chan))*nHc;
end
% the 3rd constraint
params.epsilonh_coef = 0.98;
params.epsilonh = params.epsilonh_coef * nsigh * sqrt(nH*(1 - sprateh));
% the 4-5th constraint
params.epsilonl = sqrt(sum((Lr - SB(Hr)).^2,'all')); % || Lr - SBHr ||_2
% the 6th constraint
params.etah_coef = 0.98;
params.etah = params.etah_coef * sprateh * nH * 0.5;
% the 7th constraint
params.etal_coef = 0.98;
params.etal = params.etal_coef * spratel * nL * 0.5;
% the stopping criterion of Algoritm1
params.max_iteration = 50000;
params.stopping_criterion = 0.00001;
% the stepsizes of Algorithm1
params.gamma1 = [1/18 1/17 1 1 1];
params.gamma2 = [1/5 1/5 1/5 1/5 1/5 1/5];
%% Making output directory
output_dir = append('Results/ROSTF-',num2str(params.p));
output_dir = append(output_dir, '/', site, '_');
output_dir = append(output_dir, datatype);
output_dir = append(output_dir, '_nsigh=', num2str(nsigh));
output_dir = append(output_dir, '_nsigl=', num2str(nsigl));
output_dir = append(output_dir, '_sprateh=', num2str(sprateh));
output_dir = append(output_dir, '_spratel=', num2str(spratel));
mkdir(output_dir)
save(append(output_dir,'/config.mat'),'-struct','params')
%% Run ROSTF
[preHt, optproc] = ROSTF(observed, groundtruth, params, output_dir);
%% Evaluation
% psnr
psnr_preHt = psnr(preHt, Ht_GT);
% ssim
ssim_preHt = ssim(preHt, Ht_GT);
% rmse
rmse_preHt = sqrt(immse(preHt, Ht_GT));
%corrcoef
cc_preHt = corrcoef(preHt, Ht_GT); cc_preHt = cc_preHt(1,2);
disp('Evaluation')
disp(append('PSNR : ',num2str(psnr_preHt)))
disp(append('SSIM : ',num2str(ssim_preHt)))
disp(append('RMSE : ',num2str(rmse_preHt)))
disp(append('CC : ',num2str(cc_preHt)))
%% Saving the resutls
save(append(output_dir,'/final_preHt.mat'),'preHt')
save(append(output_dir,'/optimization_process.mat'),'-struct','optproc')
end
end
end
end
end