-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnext.py
126 lines (115 loc) · 5.48 KB
/
resnext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from __future__ import division
"""
Creates a ResNeXt Model as defined in:
Xie, S., Girshick, R., Dollar, P., Tu, Z., & He, K. (2016).
Aggregated residual transformations for deep neural networks.
arXiv preprint arXiv:1611.05431.
import from https://github.com/prlz77/ResNeXt.pytorch/blob/master/models/model.py
"""
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
__all__ = ['resnext']
class ResNeXtBottleneck(nn.Module):
"""
RexNeXt bottleneck type C (https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua)
"""
def __init__(self, in_channels, out_channels, stride, cardinality, widen_factor):
""" Constructor
Args:
in_channels: input channel dimensionality
out_channels: output channel dimensionality
stride: conv stride. Replaces pooling layer.
cardinality: num of convolution groups.
widen_factor: factor to reduce the input dimensionality before convolution.
"""
super(ResNeXtBottleneck, self).__init__()
D = cardinality * out_channels // widen_factor
self.conv_reduce = nn.Conv2d(in_channels, D, kernel_size=1, stride=1, padding=0, bias=False)
self.bn_reduce = nn.BatchNorm2d(D)
self.conv_conv = nn.Conv2d(D, D, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False)
self.bn = nn.BatchNorm2d(D)
self.conv_expand = nn.Conv2d(D, out_channels, kernel_size=1, stride=1, padding=0, bias=False)
self.bn_expand = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if in_channels != out_channels:
self.shortcut.add_module('shortcut_conv', nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=0, bias=False))
self.shortcut.add_module('shortcut_bn', nn.BatchNorm2d(out_channels))
def forward(self, x):
bottleneck = self.conv_reduce.forward(x)
bottleneck = F.relu(self.bn_reduce.forward(bottleneck), inplace=True)
bottleneck = self.conv_conv.forward(bottleneck)
bottleneck = F.relu(self.bn.forward(bottleneck), inplace=True)
bottleneck = self.conv_expand.forward(bottleneck)
bottleneck = self.bn_expand.forward(bottleneck)
residual = self.shortcut.forward(x)
return F.relu(residual + bottleneck, inplace=True)
class CifarResNeXt(nn.Module):
"""
ResNext optimized for the Cifar dataset, as specified in
https://arxiv.org/pdf/1611.05431.pdf
"""
def __init__(self, cardinality=8, depth=32, num_classes=10, widen_factor=4, dropRate=0):
""" Constructor
Args:
cardinality: number of convolution groups.
depth: number of layers.
num_classes: number of classes
widen_factor: factor to adjust the channel dimensionality
"""
super(CifarResNeXt, self).__init__()
self.cardinality = cardinality
self.depth = depth
self.block_depth = (self.depth - 2) // 9
self.widen_factor = widen_factor
self.num_classes = num_classes
self.output_size = 64
self.stages = [64, 64 * self.widen_factor, 128 * self.widen_factor, 256 * self.widen_factor]
self.conv_1_3x3 = nn.Conv2d(3, 64, 3, 1, 1, bias=False)
self.bn_1 = nn.BatchNorm2d(64)
self.stage_1 = self.block('stage_1', self.stages[0], self.stages[1], 1)
self.stage_2 = self.block('stage_2', self.stages[1], self.stages[2], 2)
self.stage_3 = self.block('stage_3', self.stages[2], self.stages[3], 2)
self.classifier = nn.Linear(1024, num_classes)
init.kaiming_normal(self.classifier.weight)
for key in self.state_dict():
if key.split('.')[-1] == 'weight':
if 'conv' in key:
init.kaiming_normal(self.state_dict()[key], mode='fan_out')
if 'bn' in key:
self.state_dict()[key][...] = 1
elif key.split('.')[-1] == 'bias':
self.state_dict()[key][...] = 0
def block(self, name, in_channels, out_channels, pool_stride=2):
""" Stack n bottleneck modules where n is inferred from the depth of the network.
Args:
name: string name of the current block.
in_channels: number of input channels
out_channels: number of output channels
pool_stride: factor to reduce the spatial dimensionality in the first bottleneck of the block.
Returns: a Module consisting of n sequential bottlenecks.
"""
block = nn.Sequential()
for bottleneck in range(self.block_depth):
name_ = '%s_bottleneck_%d' % (name, bottleneck)
if bottleneck == 0:
block.add_module(name_, ResNeXtBottleneck(in_channels, out_channels, pool_stride, self.cardinality,
self.widen_factor))
else:
block.add_module(name_,
ResNeXtBottleneck(out_channels, out_channels, 1, self.cardinality, self.widen_factor))
return block
def forward(self, x):
x = self.conv_1_3x3.forward(x)
x = F.relu(self.bn_1.forward(x), inplace=True)
x = self.stage_1.forward(x)
x = self.stage_2.forward(x)
x = self.stage_3.forward(x)
x = F.avg_pool2d(x, 8, 1)
x = x.view(-1, 1024)
return self.classifier(x), x
def resnext(**kwargs):
"""Constructs a ResNeXt.
"""
model = CifarResNeXt(**kwargs)
return model