forked from jina-ai/clip-as-service
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample1.py
34 lines (28 loc) · 1.1 KB
/
example1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Han Xiao <[email protected]> <https://hanxiao.github.io>
# NOTE: First install bert-as-service via
# $
# $ pip install bert-serving-server
# $ pip install bert-serving-client
# $
# using BertClient in sync way
import sys
import time
from bert_serving.client import BertClient
if __name__ == '__main__':
bc = BertClient(port=int(sys.argv[1]), port_out=int(sys.argv[2]), show_server_config=True)
# encode a list of strings
with open('README.md') as fp:
data = [v for v in fp if v.strip()][:512]
num_tokens = sum(len([vv for vv in v.split() if vv.strip()]) for v in data)
show_tokens = len(sys.argv) > 3 and bool(sys.argv[3])
bc.encode(data) # warm-up GPU
for j in range(10):
tmp = data * (2 ** j)
c_num_tokens = num_tokens * (2 ** j)
start_t = time.time()
bc.encode(tmp, show_tokens=show_tokens)
time_t = time.time() - start_t
print('encoding %10d sentences\t%.2fs\t%4d samples/s\t%6d tokens/s' %
(len(tmp), time_t, int(len(tmp) / time_t), int(c_num_tokens / time_t)))