Skip to content

Latest commit

 

History

History
108 lines (101 loc) · 3.89 KB

File metadata and controls

108 lines (101 loc) · 3.89 KB

Multi-Objective-Algorithms-Comparison

Comparison of MOEAs with statistical methods.

This is a independent statistical module for MOEA data. The repository ExecuteJMetal have a auxiliar java code if you need.

Install some programs

  1. You need R Language - for .R files
    sudo apt-get update
    sudo apt-get install r-base
    sudo apt-get install r-base-dev
    1. Install Irace:
      R
      install.packages("irace")

    2. Install Scatterplot3D, used in new experiment components:
      R
      install.packages("scatterplot3d", repos="http://R-Forge.R-project.org")

    3. Install PMCMR
      R
      install.packages("PMCMR")

  2. You need LaTeX - For .tex files
    sudo apt-get install texlive-full
    sudo apt install texlive-latex-base
    sudo apt install texlive-generic-extra
    sudo apt-get install texlive-latex-extra
    sudo apt-get install texlive-science

The Scatter Plot of point can be found at "Plots/ScatterPlot.R".
You can import the scripts and use, like: R
source("main.R")
algorithms = c("MOEADDRA","NSGAII","IBEA")
objectivePoints("UF7", algorithms)
objectivePoints3D("UF8", algorithms)




Functions avaible

# loadData(algorithm, instance) #Return the data file from instance ant indicator
# setBenchmark(benchmark)
# bestHV(algorithm, instance)
# bestIGD(algorithm, instance)
# bestEP(algorithm, instance)
# bestIndicators(algorithm, instance)
# setBenchmark(benchmark) #example, send "UF" and it will return a array with all of instances in this benchmark
#
source("./Statistics/Counter.R")
# countWinners(algorithms, instances)
# countAll(algorithm, instance)
# countAllinBenchmark(algorithm, benchmark)



source("./Statistics/MeanAndStandardDeviation.R")
# meanAndStandardDeviationTable(OutputFile, algorithms, problems, indicator) #tex
#
source("./Tex/latexFunctions.R")
# #### LATEX FUNCTIONS ####
# latexCreate(file)
# latexHeader(file)
# latexNewSection(file, section)
# latexTail(file)
# latexTableHeader(OutputFile,indicator, caption, tabularString, latexTableFirstLine)
# latexTableLine(file, line, best)
# latexTableTail(file)
# latexWinnersTable(file, problem, algorithms)
# winnerTables(algorithms, benchmarks) #this files generate a tex file of winner algorithms
#
source("./Plots/ScatterPlot.R")
# #### POINT & LINE CHART ####
# objectivePoints(instanceName, algorithmsNames)
# objectivePoints3D(instanceName, algorithmsNames)
source("./Plots/LinePlot.R")
# linePlotEvolution(instance, indicator, algorithmsNames)




source("./Statistics/Kruskal.R")
# #### Kruskall-Wallis ####
# KruskallWallisTest(algorithms, instance,indicator) #this will print in terminal the comparison of all algorithms
# kruskalMain(algorithms,problems,indicator)

# #### R functions of JMetal (modified) ####
#
source("./Statistics/Wilcoxon.R")
# wilcoxonMain(algorithms,problems,indicator)
#
source("./Plots/BoxPlot.R")
# JMetalBoxplot(algorithms, indicator, problem)


source("./Tex/latexStatisticalTests.R")
# latexMain(algorithms, benchmark)