This repository has been archived by the owner on Nov 20, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathgammainv.c
195 lines (160 loc) · 4.35 KB
/
gammainv.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/* cdf/gammainv.c
*
* Copyright (C) 2003, 2007 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
*/
#include <config.h>
#include <math.h>
#include <gsl/gsl_cdf.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_sf_gamma.h>
#include <stdio.h>
double
gsl_cdf_gamma_Pinv (const double P, const double a, const double b)
{
double x;
if (P == 1.0)
{
return GSL_POSINF;
}
else if (P == 0.0)
{
return 0.0;
}
/* Consider, small, large and intermediate cases separately. The
boundaries at 0.05 and 0.95 have not been optimised, but seem ok
for an initial approximation.
BJG: These approximations aren't really valid, the relevant
criterion is P*gamma(a+1) < 1. Need to rework these routines and
use a single bisection style solver for all the inverse
functions.
*/
if (P < 0.05)
{
double x0 = exp ((gsl_sf_lngamma (a) + log (P)) / a);
x = x0;
}
else if (P > 0.95)
{
double x0 = -log1p (-P) + gsl_sf_lngamma (a);
x = x0;
}
else
{
double xg = gsl_cdf_ugaussian_Pinv (P);
double x0 = (xg < -0.5*sqrt (a)) ? a : sqrt (a) * xg + a;
x = x0;
}
/* Use Lagrange's interpolation for E(x)/phi(x0) to work backwards
to an improved value of x (Abramowitz & Stegun, 3.6.6)
where E(x)=P-integ(phi(u),u,x0,x) and phi(u) is the pdf.
*/
{
double lambda, dP, phi;
unsigned int n = 0;
start:
dP = P - gsl_cdf_gamma_P (x, a, 1.0);
phi = gsl_ran_gamma_pdf (x, a, 1.0);
if (dP == 0.0 || n++ > 32)
goto end;
lambda = dP / GSL_MAX (2 * fabs (dP / x), phi);
{
double step0 = lambda;
double step1 = -((a - 1) / x - 1) * lambda * lambda / 4.0;
double step = step0;
if (fabs (step1) < 0.5 * fabs (step0))
step += step1;
if (x + step > 0)
x += step;
else
{
x /= 2.0;
}
if (fabs (step0) > 1e-10 * x || fabs(step0 * phi) > 1e-10 * P)
goto start;
}
end:
if (fabs(dP) > GSL_SQRT_DBL_EPSILON * P)
{
GSL_ERROR_VAL("inverse failed to converge", GSL_EFAILED, GSL_NAN);
}
return b * x;
}
}
double
gsl_cdf_gamma_Qinv (const double Q, const double a, const double b)
{
double x;
if (Q == 1.0)
{
return 0.0;
}
else if (Q == 0.0)
{
return GSL_POSINF;
}
/* Consider, small, large and intermediate cases separately. The
boundaries at 0.05 and 0.95 have not been optimised, but seem ok
for an initial approximation. */
if (Q < 0.05)
{
double x0 = -log (Q) + gsl_sf_lngamma (a);
x = x0;
}
else if (Q > 0.95)
{
double x0 = exp ((gsl_sf_lngamma (a) + log1p (-Q)) / a);
x = x0;
}
else
{
double xg = gsl_cdf_ugaussian_Qinv (Q);
double x0 = (xg < -0.5*sqrt (a)) ? a : sqrt (a) * xg + a;
x = x0;
}
/* Use Lagrange's interpolation for E(x)/phi(x0) to work backwards
to an improved value of x (Abramowitz & Stegun, 3.6.6)
where E(x)=P-integ(phi(u),u,x0,x) and phi(u) is the pdf.
*/
{
double lambda, dQ, phi;
unsigned int n = 0;
start:
dQ = Q - gsl_cdf_gamma_Q (x, a, 1.0);
phi = gsl_ran_gamma_pdf (x, a, 1.0);
if (dQ == 0.0 || n++ > 32)
goto end;
lambda = -dQ / GSL_MAX (2 * fabs (dQ / x), phi);
{
double step0 = lambda;
double step1 = -((a - 1) / x - 1) * lambda * lambda / 4.0;
double step = step0;
if (fabs (step1) < 0.5 * fabs (step0))
step += step1;
if (x + step > 0)
x += step;
else
{
x /= 2.0;
}
if (fabs (step0) > 1e-10 * x)
goto start;
}
}
end:
return b * x;
}