-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataio.py
429 lines (368 loc) · 16.8 KB
/
dataio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import math
import os
import errno
import matplotlib.colors as colors
import torch
from PIL import Image
from torch.utils.data import Dataset
# from torchvision.transforms import Resize, Compose, ToTensor, Normalize
import urllib.request
from tqdm import tqdm
import numpy as np
import copy
# from inside_mesh import inside_mesh
import nibabel as nb
from scipy.spatial import cKDTree as spKDTree
import qtlib
import pandas as pd
import glob
import time
from matplotlib import pyplot as plt
import glob
from pyDKI.utils import *
import time
from numba import jit
import utils
from scipy.ndimage import binary_dilation
torch.cuda.set_device(int(os.environ["CUDA_USING"]))
def to_uint8(x):
return (255. * x).astype(np.uint8)
def to_numpy(x):
return x.detach().cpu().numpy()
@jit(cache=True)
def diff_divscale_exp_noddi(bval,diff,mask,opt):
# print('bval',bval)
b0 = np.zeros(diff[:,:,:,0:1].shape)
b0count = 0
entire_mask = []
for ii in range(0,len(bval)):
# print(bval[ii])
if abs(bval[ii])<20:
b0 = b0 + diff[:,:,:,ii:ii+1]
b0count = b0count+1
b0 = b0/b0count
b0_div = b0.copy()
b0_div[b0_div==0]=1
for ii in range(0,len(bval)):
tmpmask = np.ones(diff[:,:,:,ii:ii+1].shape)
if opt.b0process == 2 and bval[ii]<25:
tmpmask = np.zeros(diff[:,:,:,ii:ii+1].shape)
entire_mask.append(mask*tmpmask)
print(np.sum(entire_mask[-1]))
scalenumber = np.percentile(b0[mask>0], 50)
diffnorm = diff/scalenumber
b0scale = b0/scalenumber
print("scalenumber",scalenumber)
entire_mask = np.concatenate(entire_mask,-1)
return diffnorm,b0scale,entire_mask,scalenumber
@jit(cache=True)
def diff_divscale_exp_noddi_new(bval,diff,mask,opt):
# print('bval',bval)
b0 = np.zeros(diff[:,:,:,0:1].shape)
b0count_map = np.zeros(diff[:,:,:,0:1].shape)
entire_mask = []
signal_min_threshold = 2e-16
for ii in range(0,len(bval)):
# print(bval[ii])
if abs(bval[ii])<25:
diff_tmp = diff[:,:,:,ii:ii+1]
b0 = b0 + diff_tmp
b0count_map = b0count_map + (diff_tmp>signal_min_threshold)
b0count_map_copy = b0count_map.copy()
b0count_map[b0count_map==0]=1
b0 = b0/b0count_map
b0_div = b0.copy()
b0_div[b0_div==0]=1
for ii in range(0,len(bval)):
diff_tmp = diff[:,:,:,ii:ii+1]
if opt.b0process == 2 and bval[ii]<25:
tmpmask = np.zeros(diff_tmp.shape)
else:
tmpmask = np.ones(diff_tmp.shape)
tmpmask[diff_tmp < signal_min_threshold] = 0
entire_mask.append(mask*tmpmask*(b0count_map_copy>0) ) # b0全是0的点要remove掉
print(np.sum(entire_mask[-1]))
# print('b0.shape',b0.shape,'mask.shape',mask.shape)
scalenumber = np.percentile(b0[mask>0], 50)
diffnorm = diff/scalenumber
b0scale = b0/scalenumber
print("scalenumber",scalenumber)
entire_mask = np.concatenate(entire_mask,-1)
return diffnorm,b0scale,entire_mask,scalenumber,b0count_map_copy
@jit(cache=True)
def conv3D(img,kernel):
convresult = np.zeros(img.shape)
for ii in range(1,img.shape[0]-1):
for jj in range(1,img.shape[1]-1):
for kk in range(1,img.shape[2]-1):
convresult[ii,jj,kk,0] = np.sum(img[ii-1:ii+2,jj-1:jj+2,kk-1:kk+2,0]*kernel)
return convresult
def localsum_image(img):
kernel = np.zeros([3,3,3])
kernel[0,1,1] = 1
kernel[1,0,1] = 1
kernel[1,1,0] = 1
kernel[1,1,2] = 1
kernel[1,2,1] = 1
kernel[2,1,1] = 1
kernel = kernel
avgmask = np.zeros(img.shape)
for jj in range(0,img.shape[-1]):
avgmask[:,:,:,jj:jj+1] = conv3D(img[:,:,:,jj:jj+1],kernel)
return avgmask,kernel
def avgmaskfill_1b0(img_norm,b0scale,entire_mask ,b0scalenum,bval):
img_norm_sum,_ = localsum_image(img_norm*entire_mask)
entire_mask_sum,_ = localsum_image(entire_mask)
entire_mask_sum[entire_mask_sum==0]=1
img_norm_blur = img_norm_sum/entire_mask_sum
img_norm_avg = img_norm*entire_mask+img_norm_blur*(1-entire_mask)
# make the b0 b0
img_norm_avg[:,:,:,0] = img_norm_avg[:,:,:,0] + img_norm[:,:,:,0]
return img_norm_avg,b0scale,entire_mask ,b0scalenum
def avgmaskfill(img_norm,b0scale,entire_mask ,b0scalenum,bval):
img_norm_sum,_ = localsum_image(img_norm*entire_mask)
entire_mask_sum,_ = localsum_image(entire_mask)
entire_mask_sum[entire_mask_sum==0]=1
img_norm_blur = img_norm_sum/entire_mask_sum
img_norm_avg = img_norm*entire_mask+img_norm_blur*(1-entire_mask)
# make the b0 b0
for ii in range(0,img_norm.shape[-1]):
if abs(bval[ii]-0)<20:
img_norm_avg[:,:,:,ii] = img_norm_avg[:,:,:,ii] + img_norm[:,:,:,ii]
return img_norm_avg,b0scale,entire_mask ,b0scalenum
def diff_mulrescale_exp(bval,diff,diffnorm,mask):
b0 = np.zeros(diff[:,:,:,0:1].shape)
b0count = 0
for ii in range(0,len(bval)):
# print(bval[ii])
if abs(bval[ii])<50:
b0 = b0 + diff[:,:,:,ii:ii+1]
b0count = b0count+1
b0 = b0/b0count
scalenumber = np.percentile(b0[mask>0], 50)
diffnorm_back = diffnorm*scalenumber
return diffnorm_back
class NiftiFile3D_block_NODDI(Dataset):
def __init__(self, dpSub, grayscale=True,use_tmask = False,useT1=False,useT2=False,aug=0,opt=None):
super().__init__()
start = time.time()
bval = pd.read_csv(glob.glob(os.path.join(dpSub,opt.subpath,"*.bval"))[0],header=None).values.T
bvec = pd.read_csv(glob.glob(os.path.join(dpSub,opt.subpath,"*.bvec"))[0],header=None,sep=" ").values.T
# process bvec
bvecsqsum = np.sum(bvec*bvec,axis=0)
bvecsqsum[bvecsqsum==0]=1
bvec = bvec/np.array([bvecsqsum for ss in range(0,3)])
fpImg = glob.glob(os.path.join(dpSub,opt.subpath,"*_diff.nii.gz"))[0]
if use_tmask:
fpMask = glob.glob(os.path.join(dpSub,'aparc',"MASK_BRAIN_TISSUE.nii.gz"))[0]
else:
print("brainmask")
fpMask = glob.glob(os.path.join(dpSub,opt.subpath, "*_mask.nii.gz"))[0]
img = nb.load(fpImg).get_fdata()
mask = nb.load(fpMask).get_fdata()
self.imageshape = img.shape[0:3]
if opt.sz_block_mode in ['min32']:
mask = binary_dilation(mask)
mask = mask * 1.0
mask = np.expand_dims(mask, 3)
print("loading data time",time.time()-start)
img_norm,b0scale,entire_mask,b0scalenum,b0count_map_copy = diff_divscale_exp_noddi_new(bval[0],img,mask,opt)
img_norm[img_norm<=0] = 2e-16
self.img = img_norm
self.mask = mask
self.entire_mask = entire_mask
self.b0scale = b0scale
self.b0scalenum = b0scalenum
print("normalize data time",time.time()-start)
# generate grad
if opt.dki_weighted:
b = GenDkib(bval,bvec,opt)
b = np.concatenate([b,np.ones([1,b.shape[1]])],axis = 0)
pinvb = np.linalg.pinv(b)
faltimg_norm = img_norm.reshape([-1,img_norm.shape[-1]])
olsmodel = np.log(faltimg_norm) @ pinvb
olssignal = np.exp(olsmodel @ b)
reflatimg_norm = olssignal.reshape(img_norm.shape)
# reflatimg_norm = np.exp(reflatimg_norm)
print("b.shape",b.shape)
self.grden = torch.tensor(b).to(torch.float32)
self.pinvgrden = torch.tensor(pinvb).to(torch.float32)
else:
if opt.dataset in ['DWI3DManyFast10','budadata ']:
b = qtlib.bvec2grden(bvec).T
self.grden = torch.tensor(b*bval/1000).to(torch.float32)
else:
b = GenDkib(bval,bvec,opt)
self.grden = torch.tensor(b).to(torch.float32)
print("weighted data time",time.time()-start)
# separate block
if opt.sz_block_mode == 'min32':
ind_block, ind_brain = qtlib.block_ind_min(self.mask, sz_block=opt.sz_block, sz_pad=1)
# double check the ind_block is good
tmp_mask_block = qtlib.extract_block(self.mask,ind_block)
tmp_mask_block_sum = np.array([np.sum(item) for item in tmp_mask_block])
tmp_mask_block_index = np.where(tmp_mask_block_sum!=0)[0]
ind_block = ind_block[tmp_mask_block_index]
else:
ind_block, ind_brain = qtlib.block_ind(self.mask, sz_block=opt.sz_block, sz_pad=0)
self.ind_block = ind_block
self.img_block = qtlib.extract_block(self.img,ind_block)
self.mask_block = qtlib.extract_block(self.mask,ind_block)
self.entire_mask_block = qtlib.extract_block(self.entire_mask,ind_block)
self.b0scale_block = qtlib.extract_block(self.b0scale,ind_block)
print("divide block time",time.time()-start)
if aug == 0:
pass
elif aug == 2:
self.mask_block = np.concatenate([self.mask_block,np.flip(self.mask_block,axis=1)],axis=0)
self.img_block = np.concatenate([self.img_block,np.flip(self.img_block,axis=1)],axis=0)
self.entire_mask_block = np.concatenate([self.entire_mask_block,np.flip(self.entire_mask_block,axis=1)],axis=0)
self.b0scale_block = np.concatenate([self.b0scale_block,np.flip(self.b0scale_block,axis=1)],axis=0)
else:
assert(0)
print("data augmentation time",time.time()-start)
def mask_block2coord(mask_block):
mask_block_coord = []
for ii in range(0,mask_block.shape[0]):
zerocoords = np.where(mask_block[ii]==1)
mask_block_coord.append(zerocoords[0:3])
return mask_block_coord
def img_block2coord(img_block,mask_block_coords):
img_block_coordpre = []
for ii in range(0,len(mask_block_coords) ):
coord0 = mask_block_coords[ii][0]
coord1 = mask_block_coords[ii][1]
coord2 = mask_block_coords[ii][2]
img_block_coordpre.append(torch.tensor(img_block[ii,coord0,coord1,coord2]).to(torch.float32).permute(1,0) )
return img_block_coordpre
start = time.time()
self.mask_block_coords = mask_block2coord(self.mask_block)
self.NoneEdgeIndex = utils.NoneEdge(self.mask_block_coords,opt)
self.b0scale_block_coordpre = img_block2coord(self.b0scale_block,self.mask_block_coords)
print('b0',time.time()-start)
tmpblock = self.img_block
self.img_block_coordpre = img_block2coord(tmpblock[:,:,:,:,:tmpblock.shape[-1]-useT1-useT2],self.mask_block_coords)
print('img block coord',time.time()-start)
self.entire_mask_block_coordpre = img_block2coord(self.entire_mask_block,self.mask_block_coords)
self.mask_block_coordpre = img_block2coord(self.mask_block,self.mask_block_coords)
self.img_block = torch.tensor(self.img_block).to(torch.float32)
self.mask_block = torch.tensor(self.mask_block).to(torch.float32)
self.entire_mask_block = torch.tensor(self.entire_mask_block).to(torch.float32)
self.b0scale_block = torch.tensor(self.b0scale_block).to(torch.float32)
self.img_block = self.img_block.permute(0,4,1,2,3)
self.mask_block = self.mask_block.permute(0,4,1,2,3)
self.entire_mask_block = self.entire_mask_block.permute(0,4,1,2,3)
self.b0scale_block = self.b0scale_block.permute(0,4,1,2,3)
self.kd_tree_sp = None # not sure
self.img_channels = 1
self.length = self.img_block.shape[0]
self.supplementary = {'bvec':torch.tensor(bvec).float()}
if not (opt is None) and opt.convnetwork in [14,15,16]:
self.supplementary = {'bvec':torch.tensor( np.concatenate([bvec,bval/1000],axis=0) ).float()}
# load default parameters
if len(bval.shape)==2 and bval.shape[0]==1:
bval = bval[0]
S0 = np.expand_dims(np.mean(self.img[:,:,:,bval<20],-1),-1)
S0_block = qtlib.extract_block(S0, ind_block)
if aug == 0:
pass
elif aug == 2:
S0_block = np.concatenate([S0_block,np.flip(S0_block,axis=1)],axis=0)
else:
assert(0)
S0_block_coord = img_block2coord(S0_block,self.mask_block_coords)
self.supplementary['S0_block_coord'] = S0_block_coord
self.supplementary['NoneEdgeIndex'] = self.NoneEdgeIndex
def __len__(self):
return self.length
def __getitem__(self, idx):
return self.img
class FastImageNormalDataset3D(torch.utils.data.Dataset):
def __init__(self, dataset, patch_size=(16, 16), sidelength=None, random_coords=False,
jitter=True, num_workers=0, length=1000, scale_init=3, max_patches=1024,opt=None):
# handle parallelization
self.num_workers = num_workers
self.dataset = dataset
self.length = self.dataset.length
self.img = self.dataset[0]
self.ind_block = self.dataset.ind_block
self.mask = self.dataset.mask
self.b0scale = self.dataset.b0scale
self.b0scalenum = self.dataset.b0scalenum
self.jitter = jitter
self.eval = False
self.opt = opt
if opt.MCchannel:
self.bvalnotzero = self.dataset.bvalnotzero
if opt.dataset in ['NODDI','DWI3DManyFast10','budadata']:
self.scheme_hcp = None
self.supplementary = dataset.supplementary
def toggle_eval(self):
if not self.eval:
self.jitter_bak = self.jitter
self.jitter = False
self.eval = True
else:
self.jitter = self.jitter_bak
self.eval = False
def __len__(self):
# return len(self.dataset)
return self.length
def __getitem__(self, idx):
if not self.opt is None and self.opt.EarlyStopping:
in_dict = {
'img_block': self.dataset.img_block[idx][:-1,:,:,:], # torch.Size([17, 64, 64, 64])
'mask_block': self.dataset.mask_block[idx],# torch.Size([1, 64, 64, 64])
'b0scale_block': self.dataset.b0scale_block[idx],
'mask_block_coords0': torch.tensor(self.dataset.mask_block_coords[idx][0]),# 130120,)
'mask_block_coords1': torch.tensor(self.dataset.mask_block_coords[idx][1]),
'mask_block_coords2': torch.tensor(self.dataset.mask_block_coords[idx][2])
}
else:
in_dict = {
'img_block': self.dataset.img_block[idx],
'mask_block': self.dataset.mask_block[idx],
'mask_block_coords0': torch.tensor(self.dataset.mask_block_coords[idx][0]),
'mask_block_coords1': torch.tensor(self.dataset.mask_block_coords[idx][1]),
'mask_block_coords2': torch.tensor(self.dataset.mask_block_coords[idx][2]),
'bvec': self.supplementary['bvec']
}
gt_dict = {'img_block_coordpre': self.dataset.img_block_coordpre[idx],
'b0scale_block_coordpre':self.dataset.b0scale_block_coordpre[idx],
'mask_block_coordpre':self.dataset.mask_block_coordpre[idx],
'entire_mask_block_coordpre':self.dataset.entire_mask_block_coordpre[idx],
'grden': self.dataset.grden}
try:
gt_dict['F_block_coordpre'] = self.dataset.F_block_coordpre[idx]
except Exception as err:
pass
if not self.opt is None:
if self.opt.loaddefault in [4]:
gt_dict['S0_block_coord'] = self.dataset.supplementary['S0_block_coord'][idx]
if self.opt.sz_block_mode in ['min32']:
gt_dict['NoneEdgeIndex'] = self.dataset.NoneEdgeIndex[idx]
return in_dict, gt_dict
class PartANODDIFT(Dataset):
def __init__(self, dpSubs, subj,grayscale=True,use_tmask = False,fploadlist = None,useT1 = False,useT2 = False,aug=0,opt=None):
super().__init__()
self.img_datasets = []
self.idxdict = {}
numdataset = 0
count = 0
self.grdenlist = []
dpSub = os.path.join(dpSubs,subj)
img_dataset = FastImageNormalDataset3D(NiftiFile3D_block_NODDI(dpSub,grayscale=grayscale,use_tmask = use_tmask, aug=aug,opt=opt),opt=opt)
self.b0scalenum = img_dataset.b0scalenum
self.img_datasets.append(img_dataset)
for ii in range(0,img_dataset.length):
self.idxdict[count+ii]=[numdataset,ii,dpSub]
numdataset = numdataset + 1
count = count + img_dataset.length
print(f"******{numdataset}*******")
self.length = count
self.scheme_hcp = img_dataset.scheme_hcp
def __len__(self):
return self.length
def __getitem__(self, idx):
searchidx = self.idxdict[idx]
return self.img_datasets[searchidx[0]][searchidx[1]]