-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathyolov3.yaml
111 lines (93 loc) · 2.99 KB
/
yolov3.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
PROJECT_NAME: "yolov3"
EXP_NAME: "yolov3-coco"
# random number seed
SEED: 42
# run device models
DEVICE_ID: 0
CLASS_NAMES: [ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
"hair drier", "toothbrush" ]
AUGMENT:
HYP:
HSV_H: 0.0138 # image HSV-Hue augmentation (fraction)
HSV_S: 0.678 # image HSV-Saturation augmentation (fraction)
HSV_V: 0.36 # image HSV-Value augmentation (fraction)
DEGREES: 0 # image rotation (+/- deg)
TRANSLATE: 0.0 # image translation (+/- fraction)
SCALE: 0.0 # image scale (+/- gain)
SHEAR: 0.0 # image shear (+/- gain)
USE_LR_FLIP: True # image left-right flip (probability)
USE_UD_FLIP: False # image up-down flip (probability)
MODEL:
CONFIG_PATH: "./model_configs/COCO-Detection/yolov3.cfg"
IMG_SIZE: 512
GRAY: False
NUM_CLASSES: 80
COMPILE_MODE: False
GRID_SIZE: 32
TRAIN:
DATASET:
ROOT: "./data/coco/train.txt"
AUGMENT: True
RECT_LABEL: False
CACHE_IMAGES: False
SINGLE_CLASSES: False
# Multi scale training
MULTI_SCALE:
ENABLE: True
IMG_SIZE_MIN: 320
IMG_SIZE_MAX: 512
WEIGHTS_PATH: ""
# training hyperparameters
HYP:
IMGS_PER_BATCH: 8
ACCUMULATE_BATCH_SIZE: 64
EPOCHS: 300
OPTIM:
NAME: "sgd"
LR: 0.01 # SGD 0.01, Adam 0.001
MOMENTUM: 0.9
WEIGHT_DECAY: 0.0005
NESTEROV: True
LR_SCHEDULER:
NAME: "one_cycle"
IOU_THRESH: 0.20 # iou training threshold
# Loss function
LOSSES:
GIOU_LOSS:
WEIGHT: 3.54
CLS_LOSS:
WEIGHT: 37.4
CLS_BCE_PW_LOSS:
WEIGHT: 1.0
OBJ_LOSS:
WEIGHT: 64.3
OBJ_BCE_PW_LOSS:
WEIGHT: 1.0
FL_GAMMA_LOSS:
WEIGHT: 0.0
PRINT_FREQ: 100
SAVE_EVERY_EPOCH: 5
VAL:
DATASET:
ROOT: "./data/coco/test.txt"
AUGMENT: False
RECT_LABEL: False
CACHE_IMAGES: False
SINGLE_CLASSES: False
WEIGHTS_PATH: ""
# test hyperparameters
HYP:
IMGS_PER_BATCH: 16
CONF_THRESH: 0.01
IOU_THRESH: 0.5
IOUV: (0.5, 0.95) # mAP 0.5:0.95
GT_JSON_PATH: "" # "./data/coco/annotations/instances_val2014.json"
PRED_JSON_PATH: "" # "./results/YOLOv3-coco.json"
VERBOSE: False