-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
121 lines (111 loc) · 3.73 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import argparse
from copy import deepcopy
from pathlib import Path
import gym
import torch
from src.ddpg import DDPG
from src.networks import Actor, Critic
from src.original_networks import (
Actor as OriginalActor,
Critic as OriginalCritic,
)
from src.utils import to_tensor_variable
from src.variables import variables
def run(env_str, eval_saved_model, original):
env = gym.make(env_str)
obs_space_size = env.observation_space.shape[0]
action_space_size = env.action_space.shape[0]
models_path = "models/"
runs_path = "runs/"
have_models = (
Path(models_path).exists()
and len(list(Path(models_path).iterdir())) >= 4
)
if have_models:
print("Loading pre-existent models.")
actor = torch.load(f"{models_path}actor")
critic = torch.load(f"{models_path}critic")
actor_target = torch.load(f"{models_path}actor_target")
critic_target = torch.load(f"{models_path}critic_target")
else:
print("Creating new networks.")
if original:
actor = OriginalActor(
obs_space_size=obs_space_size,
action_space_size=action_space_size,
)
critic = OriginalCritic(
obs_space_size=obs_space_size,
action_space_size=action_space_size,
)
else:
actor = Actor(
obs_space_size=obs_space_size,
action_space_size=action_space_size,
)
critic = Critic(
obs_space_size=obs_space_size,
action_space_size=action_space_size,
)
actor_target = deepcopy(actor)
critic_target = deepcopy(critic)
if not eval_saved_model:
ddpg = DDPG(
env=env,
actor=actor,
critic=critic,
actor_target=actor_target,
critic_target=critic_target,
gamma=variables["gamma"],
minibatch_size=variables["minibatch_size"],
device=variables["device"],
max_episodes=variables["max_episodes"],
tau=variables["tau"],
actor_lr=variables["actor_lr"],
critic_lr=variables["critic_lr"],
weight_decay=variables["weight_decay"],
replay_buffer_size=variables["replay_buffer_size"],
models_path=models_path,
runs_path=runs_path,
)
ddpg.train()
else:
with torch.no_grad():
observation = env.reset()
done = False
while not done:
env.render()
action = (
actor(to_tensor_variable([observation])).cpu().numpy()[0]
)
observation, reward, done, _ = env.step(action)
if done:
print(f"Episode finished with reward {reward}")
break
env.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Launch DDPG")
parser.add_argument(
"--env",
metavar="env",
dest="env",
type=str,
help="""Name of the OpenAI Gym environment.
Default: LunarLanderContinuous-v2.""",
default="LunarLanderContinuous-v2",
)
parser.add_argument(
"--eval",
dest="eval_saved_model",
action="store_true",
help="Evaluate on the saved model instead of training.",
)
parser.add_argument(
"--original",
dest="original",
action="store_true",
help="""Use networks as they are defined in the paper, without any optimization.
Beware that the two types of networks are not interchangeable.""",
)
args = parser.parse_args()
run(args.env, args.eval_saved_model, args.original)