-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_trainer.py
149 lines (125 loc) · 6.74 KB
/
model_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import logging
from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments
from datasets import Dataset
import torch
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
class ModelTrainer:
def __init__(self, model_name="microsoft/codebert-base"):
logger.debug(f"Initializing ModelTrainer with model_name: {model_name}")
self.model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
logger.debug("ModelTrainer initialized")
def train(self, train_data, output_dir="./trained_model", num_train_epochs=3):
logger.debug(f"Starting training with {len(train_data)} samples, output_dir: {output_dir}, num_train_epochs: {num_train_epochs}")
train_dataset = Dataset.from_dict({"text": [item["code"] for item in train_data],
"label": [item["is_vulnerable"] for item in train_data]})
logger.debug(f"Train dataset created with {len(train_dataset)} samples")
def tokenize_function(examples):
logger.debug(f"Tokenizing {len(examples['text'])} examples")
return self.tokenizer(examples["text"], padding="max_length", truncation=True)
tokenized_datasets = train_dataset.map(tokenize_function, batched=True)
logger.debug("Dataset tokenized")
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=num_train_epochs,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs",
)
logger.debug(f"Training arguments set: {training_args}")
trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=tokenized_datasets,
)
logger.debug("Trainer initialized")
logger.debug("Starting training")
trainer.train()
logger.debug("Training completed")
logger.debug(f"Saving model to {output_dir}")
self.model.save_pretrained(output_dir)
self.tokenizer.save_pretrained(output_dir)
logger.debug("Model and tokenizer saved")
def predict(self, code_snippet):
logger.debug(f"Predicting vulnerability for code snippet: {code_snippet[:50]}...")
inputs = self.tokenizer(code_snippet, return_tensors="pt", padding=True, truncation=True)
logger.debug(f"Inputs tokenized: {inputs}")
outputs = self.model(**inputs)
logger.debug(f"Model outputs: {outputs}")
probabilities = torch.softmax(outputs.logits, dim=1)
logger.debug(f"Probabilities: {probabilities}")
vulnerability_prob = probabilities[0][1].item()
logger.debug(f"Vulnerability probability: {vulnerability_prob}")
return vulnerability_prob
def fine_tune(self, fine_tuning_data):
logger.debug(f"Starting fine-tuning with {len(fine_tuning_data)} samples")
train_dataset = Dataset.from_dict({
"text": [item["code"] for item in fine_tuning_data],
"label": [item["is_vulnerable"] for item in fine_tuning_data]
})
logger.debug(f"Fine-tuning dataset created with {len(train_dataset)} samples")
def tokenize_function(examples):
logger.debug(f"Tokenizing {len(examples['text'])} examples for fine-tuning")
return self.tokenizer(examples["text"], padding="max_length", truncation=True)
tokenized_datasets = train_dataset.map(tokenize_function, batched=True)
logger.debug("Fine-tuning dataset tokenized")
training_args = TrainingArguments(
output_dir="./fine_tuned_model",
num_train_epochs=2,
per_device_train_batch_size=8,
learning_rate=2e-5,
weight_decay=0.01,
logging_dir="./logs",
)
logger.debug(f"Fine-tuning arguments set: {training_args}")
trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=tokenized_datasets,
)
logger.debug("Fine-tuning trainer initialized")
logger.debug("Starting fine-tuning")
trainer.train()
logger.debug("Fine-tuning completed")
logger.debug("Saving fine-tuned model")
self.model.save_pretrained("./fine_tuned_model")
self.tokenizer.save_pretrained("./fine_tuned_model")
logger.debug("Fine-tuned model and tokenizer saved")
async def predict_batch(self, code_snippets):
logger.debug(f"Predicting vulnerabilities for {len(code_snippets)} code snippets")
inputs = self.tokenizer(code_snippets, return_tensors="pt", padding=True, truncation=True)
logger.debug(f"Batch inputs tokenized: {inputs}")
outputs = self.model(**inputs)
logger.debug(f"Batch model outputs: {outputs}")
probabilities = torch.softmax(outputs.logits, dim=1)
logger.debug(f"Batch probabilities: {probabilities}")
vulnerability_probs = probabilities[:, 1].tolist()
logger.debug(f"Batch vulnerability probabilities: {vulnerability_probs}")
return vulnerability_probs
def explain_prediction(self, code_snippet):
logger.debug(f"Explaining prediction for code snippet: {code_snippet[:50]}...")
from captum.attr import IntegratedGradients
from captum.attr import visualization as viz
self.model.eval()
self.model.zero_grad()
logger.debug("Model set to evaluation mode and gradients zeroed")
input_ids = self.tokenizer.encode(code_snippet, return_tensors="pt")
logger.debug(f"Input IDs: {input_ids}")
input_embedding = self.model.get_input_embeddings()(input_ids)
logger.debug(f"Input embedding shape: {input_embedding.shape}")
ig = IntegratedGradients(self.model)
logger.debug("IntegratedGradients initialized")
attributions, delta = ig.attribute(input_embedding, return_convergence_delta=True)
logger.debug(f"Attributions shape: {attributions.shape}, Convergence delta: {delta}")
tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0])
logger.debug(f"Tokens: {tokens}")
attributions = attributions.sum(dim=-1).squeeze(0)
attributions = attributions / torch.norm(attributions)
attributions = attributions.detach().numpy()
logger.debug(f"Normalized attributions shape: {attributions.shape}")
logger.debug("Visualizing text attributions")
viz.visualize_text(tokens, attributions)
logger.debug("Visualization complete")