Skip to content

Latest commit

 

History

History
 
 

unimol_plus

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Highly Accurate Quantum Chemical Property Prediction with Uni-Mol+

arXiv PWC

Schematic illustration of the Uni-Mol+ framework

Uni-Mol+ is a model for quantum chemical property prediction. Firstly, given a 2D molecular graph, Uni-Mol+ generates an initial 3D conformation from inexpensive methods such as RDKit. Then, the initial conformation is iteratively optimized to its equilibrium conformation, and the optimized conformation is further used to predict the QC properties.

In the PCQM4MV2 bencmark, Uni-Mol+ outperforms previous SOTA methods by a large margin.

Model Settings # Layers # Param. Validation MAE Model Checkpoint
Uni-Mol+ 12 52.4 M 0.0708 link
Uni-Mol+ Large 18 77 M 0.0701 link

Dependencies

Data Preparation

First, download the data:

cd scripts
bash download.sh

Second, covert the 3D SDF (training set only) to lmdb file:

python get_label3d_lmdb.py

Finally, generate the training, validation and test datasets:

python get_3d_lmdb.py train
python get_3d_lmdb.py valid
python get_3d_lmdb.py test-dev
python get_3d_lmdb.py test-challenge

Inference

export data_path="your_data_path"
export results_path="your_result_path"
export weight_path="your_ckp_path"
export arch="unimol_plus_large" # or "unimol_plus_base" if you use 12-layer model
bash inference.sh test-dev # or other splits

Training

data_path="your_data_path"
save_dir="your_save_path"
lr=2e-4
batch_size=128 # per gpu batch size 128, we default use 8 GPUs
export arch="unimol_plus_large" # or "unimol_plus_base" if you use 12-layer model
bash train_pcq.sh $data_path $save_dir $lr $batch_size

Citation

Please kindly cite this paper if you use the data/code/model.

@misc{lu2023highly,
      title={Highly Accurate Quantum Chemical Property Prediction with Uni-Mol+}, 
      author={Shuqi Lu and Zhifeng Gao and Di He and Linfeng Zhang and Guolin Ke},
      year={2023},
      eprint={2303.16982},
      archivePrefix={arXiv},
      primaryClass={physics.chem-ph}
}

License

This project is licensed under the terms of the MIT license. See LICENSE for additional details.