-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathafd_interpolate_pl.c
320 lines (306 loc) · 10.3 KB
/
afd_interpolate_pl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/* This file was taken from PerfectRaw ver. 0.65
on May 14, 2010, taking dcraw ver.8.88/rev.1.405
as basis.
http://dl.dropbox.com/u/602348/perfectRAW%200.65%20source%20code.zip
As PerfectRaw source code was published, the release under
GPL Version 2 or later option could be applied, so this file
is taken under this premise.
*/
/*
Adaptive Filtered Demosaicking interpolation is adapted from
the work of Lian Naixiang, Chang Lanlan and Prof. Tan Yap Peng.
*/
#define FC_BK(row,col) \
(filters_bk >> ((((row) << 1 & 14) + ((col) & 1)) << 1) & 3)
#define PIX_SORT(a,b) { if ((a)>(b)) {temp=(a);(a)=(b);(b)=temp;} }
void CLASS afd_interpolate_pl(int afd_passes, int clip_on)
{
int row, col, rr, cc, rr1, cc1, c, d, ii, jj, ba, lum_iter;
int p12, p13, p14, p21, p22, p23, p24, p25;
int p41, p42, p43, p44, p45, p52, p53, p54;
float (*pix)[4], (*dimage)[4], (*w)[4], *glut;
double v0, v1, v2, dG, dC0, dC1, dC2, dC3, dC4, temp;
double ws, w0, w1, w2, w3, dt;
clock_t t1, t2;
#ifdef DCRAW_VERBOSE
if (verbose) {
fprintf(stderr,_("AFD interpolation with pattern matching...\n"));
fprintf(stderr,_("\tafd_passes, clip_on = %d, %d\n"),afd_passes,clip_on); }
#endif
t1 = clock();
// allocate work with boundary
ba = 6;
rr1 = height + 2*ba;
cc1 = width + 2*ba;
// Set up working arrays
dimage = (float (*)[4])calloc(rr1*cc1, sizeof *dimage);
w = (float (*)[4])calloc((int)((1+rr1*cc1)/2),sizeof *w);
// copy CFA values and apply gamma correction
glut = (float *)calloc(65536,sizeof *glut);
for (ii=0; ii < 65536; ii++) {
v0 = (float)ii / 65535.0;
glut[ii] = (v0 <= 0.0031308 ? v0*12.92 : 1.055*pow(v0,1./2.4) - 0.055); }
//
for (rr=0; rr < rr1; rr++)
for (cc=0, row=rr-ba; cc < cc1; cc++) {
col = cc - ba;
ii = rr*cc1 + cc;
c = FC(rr,cc);
if ((row >= 0) & (row < height) & (col >= 0) & (col < width))
dimage[ii][c] = glut[image[row*width+col][c]];
else
dimage[ii][c] = 0; }
//
free(glut);
// Set up indices
p12 = -2*cc1-1; p13 = p12+1; p14 = p13+1;
p21 = -cc1-2; p22 = p21+1; p23 = p22+1; p24 = p23+1; p25 = p24+1;
p41 = cc1-2; p42 = p41+1; p43 = p42+1; p44 = p43+1; p45 = p44+1;
p52 = 2*cc1-1; p53 = p52+1; p54 = p53+1;
// Low pass filtering to extract luminance at GREEN pixels
for (rr=2; rr < rr1-2; rr++)
for (cc=2+(FC(rr,3)&1), c=FC(rr,cc+1); cc < cc1-2; cc+=2) {
pix = dimage + rr*cc1+cc;
d = 2 - c;
v0 = (pix[p12][c] + pix[p14][c] + pix[p21][d] + pix[p25][d] +
pix[p41][d] + pix[p45][d] + pix[p52][c] + pix[p54][c]
- 2.0*(pix[p13][1] + pix[ -2][1] + pix[ 2][1] + pix[p53][1])
- 4.0*(pix[p22][1] + pix[p24][1] + pix[p42][1] + pix[p44][1])
+ 6.0*(pix[p23][d] + pix[ -1][c] + pix[ 1][c] + pix[p43][d])
+ 56.0*pix[0][1]) / 64.0;
if (clip_on) v0 = LIM(v0,0.0,1.0);
pix[0][3] = v0; }
// Compute adapative weighting matrix
for (ii=0, rr=2; rr < rr1-2; rr++)
for (cc=2+(FC(rr,2)&1), c=FC(rr,cc); cc < cc1-2; cc+=2, ii++) {
pix = dimage + rr*cc1+cc;
v0 = pix[0][c];
// horizontal
dG = pix[1][1] - pix[-1][1];
if (dG < 0) dG = -dG;
v1 = v0 - pix[ -2][c];
if (v1 < 0) v1 = -v1;
v2 = v0 - pix[ 2][c];
if (v2 < 0) v2 = -v2;
w0 = 1.0/(1.0 + v1 + dG);
w2 = 1.0/(1.0 + v2 + dG);
// vertical
dG = pix[p43][1] - pix[p23][1];
if (dG < 0) dG = -dG;
v1 = v0 - pix[p13][c];
if (v1 < 0) v1 = -v1;
v2 = v0 - pix[p53][c];
if (v2 < 0) v2 = -v2;
w1 = 1.0/(1.0 + v1 + dG);
w3 = 1.0/(1.0 + v2 + dG);
//
ws = w0 + w1 + w2 + w3;
w[ii][0] = w0/ws;
w[ii][1] = w1/ws;
w[ii][2] = w2/ws;
w[ii][3] = w3/ws; }
// Calculate initial red/blue at GREEN pixels with bilinear
for (rr=1; rr < rr1-1; rr++)
for (cc=1+(FC(rr,2)&1), c=FC(rr,cc+1); cc < cc1-1; cc+=2) {
pix = dimage + rr*cc1+cc;
pix[0][c] = 0.5*(pix[ -1][c] + pix[ 1][c]);
c = 2 - c;
pix[0][c] = 0.5*(pix[p23][c] + pix[p43][c]);
c = 2 - c; }
for (lum_iter=0; lum_iter < afd_passes; lum_iter++) {
// Estimate luminance at RED/BLUE pixels
for (ii=0, rr=2; rr < rr1-2; rr++)
for (cc=2+(FC(rr,2)&1), c=FC(rr,cc); cc < cc1-2; cc+=2, ii++) {
pix = dimage + rr*cc1+cc;
v0 = pix[0][c] +
w[ii][0]*(pix[ -1][3] - pix[ -1][c]) +
w[ii][2]*(pix[ 1][3] - pix[ 1][c]) +
w[ii][1]*(pix[p23][3] - pix[p23][c]) +
w[ii][3]*(pix[p43][3] - pix[p43][c]);
if (clip_on) v0 = LIM(v0,0.0,1.0);
pix[0][3] = v0; }
// Interpolote red/blue pixels on BLUE/RED pixel locations
// using pattern regcognition on (r-L or b-L)
for (rr=1; rr < rr1-1; rr++)
for (cc=1+(FC(rr,1)&1), c=2-FC(rr,cc); cc < cc1-1; cc+=2) {
pix = dimage + rr*cc1+cc;
dC1 = pix[p22][c] - pix[p22][3];
dC2 = pix[p24][c] - pix[p24][3];
dC3 = pix[p42][c] - pix[p42][3];
dC4 = pix[p44][c] - pix[p44][3];
dC0 = 0.25*(dC1 + dC2 + dC3 + dC4);
jj = (dC1 > dC0) + (dC2 > dC0) + (dC3 > dC0) + (dC4 > dC0);
if (jj == 3 || jj == 1) {
// edge-corner pattern: median of colorr differential values
PIX_SORT(dC1,dC2);
PIX_SORT(dC3,dC4);
PIX_SORT(dC1,dC3);
PIX_SORT(dC2,dC4);
dC0 = 0.5*(dC2 + dC3); }
else {
// stripe pattern: average along diagonal
v1 = pix[p22][c] - pix[p44][c];
if (v1 < 0) v1 = -v1;
v2 = pix[p24][c] - pix[p42][c];
if (v2 < 0) v2 = -v2;
dC0 = (v1 < v2 ? 0.5*(dC1 + dC4) : 0.5*(dC2 + dC3)); }
v0 = pix[0][3] + dC0;
if (clip_on) v0 = LIM(v0,0.0,1.0);
pix[0][c] = v0; }
// Interpolote red/blue pixels on GREEN pixel locations
// using pattern regcognition on (r-L or b-L)
for (rr=1; rr < rr1-1; rr++)
for (cc=1+(FC(rr,2)&1), c=FC(rr,cc+1); cc < cc1-1; cc+=2) {
pix = dimage + rr*cc1+cc;
for (ii=0; ii < 2; c=2-c, ii++) {
dC1 = pix[p23][c] - pix[p23][3];
dC2 = pix[ -1][c] - pix[ -1][3];
dC3 = pix[ 1][c] - pix[ 1][3];
dC4 = pix[p43][c] - pix[p43][3];
dC0 = 0.25*(dC1 + dC2 + dC3 + dC4);
jj = (dC1 > dC0) + (dC2 > dC0) + (dC3 > dC0) + (dC4 > dC0);
if (jj == 3 || jj == 1) {
// edge-corner pattern: median of color differential values
PIX_SORT(dC1,dC2);
PIX_SORT(dC3,dC4);
PIX_SORT(dC1,dC3);
PIX_SORT(dC2,dC4);
dC0 = 0.5*(dC2 + dC3); }
else {
// stripe pattern: average along diagonal
v1 = pix[p23][c] - pix[p43][c];
if (v1 < 0) v1 = -v1;
v2 = pix[ -1][c] - pix[ 1][c];
if (v2 < 0) v2 = -v2;
dC0 = (v1 < v2 ? 0.5*(dC1 + dC4) : 0.5*(dC2 + dC3)); }
v0 = pix[0][3] + dC0;
if (clip_on) v0 = LIM(v0,0.0,1.0);
pix[0][c] = v0; }
}
}
free(w);
// Interpolate green pixels at RED/BLUE
for (rr=2; rr < rr1-2; rr++)
for (cc=2+(FC(rr,2)&1), c=2-FC(rr,cc); cc < cc1-2; cc+=2) {
pix = dimage + rr*cc1+cc;
// green
pix[0][1] = pix[0][3] + 0.25*(pix[ -1][1] - pix[ -1][3] +
pix[ 1][1] - pix[ 1][3] +
pix[p23][1] - pix[p23][3] +
pix[p43][1] - pix[p43][3]); }
// copy result back to image matrix
for (row=0; row < height; row++)
for (col=0, rr=row+ba; col < width; col++) {
cc = col+ba;
c = FC(row,col);
pix = dimage + rr*cc1+cc;
ii = row*width + col;
for (jj=0; jj < 3; jj++)
if (jj != c) {
v0 = pix[0][jj];
v1 = (v0 <= 0.04045 ? v0/12.92 : pow((v0 + 0.055)/1.055,2.4));
image[ii][jj] = CLIP((int)(65535.0*v1 + 0.5)); } }
free(dimage);
// Done
t2 = clock();
dt = ((double)(t2-t1)) / CLOCKS_PER_SEC;
#ifdef DCRAW_VERBOSE
if (verbose) fprintf(stderr,_("\telapsed time = %5.3fs\n"),dt);
#endif
}
//void CLASS afd_noise_filter_pl()
//{
// int i,c,row,col;
// int shrinked;
// float mean,std_dev;
// float noise_attenuation;
// ushort value;
// int offset;
// ushort (*img)[4], *lum;
//
// if (half_size) return;
// shrinked=0;
// if (shrink){
// shrinked=shrink;
// unshrink_image();
// }
//
// img = (ushort (*)[4]) calloc (height*width, sizeof *img);
// merror(img,"afd_noise_filter_pl");
// memcpy(img,image,height*width*sizeof *img);
//
// // preinterpolate
// filters_bk=filters;
// for (row = FC(1,0) >> 1; row < height; row+=2)
// for (col = FC(row,1) & 1; col < width; col+=2)
// image[row*width+col][1] = image[row*width+col][3];
// filters &= ~((filters & 0x55555555) << 1);
// // interpolate
// afd_interpolate_pl(2,1);
//
// // Get luminance
// lum = (ushort *)calloc(width*height,sizeof *lum);
// for(i=0;i<width*height;i++) lum[i]=(ushort)CLIP(CIE_L(i));
//
// for(row=1;row<height-1;row++)
// for(col=1;col<width-1;col++){
// // Calculate 3x3 mean
// offset=row*width+col;
// c=FC(row,col);
// value=image[offset][c];
//
// mean=
// (lum[offset-width-1]+
// lum[offset-width]+
// lum[offset-width+1]+
// lum[offset-1]+
// lum[offset]+
// lum[offset+1]+
// lum[offset+width-1]+
// lum[offset+width]+
// lum[offset+width+1])/9.0;
//
// // Calculate 3x3 standard deviation
// std_dev=sqrt
// ((lum[offset-width-1]-mean)*(lum[offset-width-1]-mean)+
// (lum[offset-width]-mean)*(lum[offset-width]-mean)+
// (lum[offset-width+1]-mean)*(lum[offset-width+1]-mean)+
// (lum[offset-1]-mean)*(lum[offset-1]-mean)+
// (lum[offset]-mean)*(lum[offset]-mean)+
// (lum[offset+1]-mean)*(lum[offset+1]-mean)+
// (lum[offset+width-1]-mean)*(lum[offset+width-1]-mean)+
// (lum[offset+width]-mean)*(lum[offset+width]-mean)+
// (lum[offset+width+1]-mean)*(lum[offset+width+1]-mean))/9.0;
//
// // Salt and pepper identification
// if(1.0*std_dev<abs((float)lum[offset]-mean)){
// mean=
// (image[offset-width-1][c]+
// image[offset-width][c]+
// image[offset-width+1][c]+
// image[offset-1][c]+
// image[offset+1][c]+
// image[offset+width-1][c]+
// image[offset+width][c]+
// image[offset+width+1][c])/8.0;
//
// noise_attenuation=((float)afd_noise_thres)/exp(10.0*mean/(float)maximum);
// value=(ushort)CLIP((mean*((float)noise_attenuation)+(float)value*(100.0-(float)noise_attenuation))/100.0);
// image[offset][c]=img[offset][FC_BK(row,col)]=value;
// lum[offset]=(ushort)CLIP(CIE_L(offset));
// }
// }
// // Restore uninterpolated image
// memcpy(image,img,width*height*sizeof *img);
// filters=filters_bk;
//
// free(img);
// free(lum);
//
// if (shrinked) {
// shrink=shrinked;
// shrink_image();
// }
//}
#undef PIX_SORT
#undef FC_BK