-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathtest2.py
46 lines (40 loc) · 1.57 KB
/
test2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/usr/bin/python3
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.optim as optim
import os
from ArgoverseDataset import ArgoverseForecastDataset
from vectornet import VectorNet
import logging
def main():
USE_GPU = True
RUN_PARALLEL = True
device_ids = [0, 1]
if USE_GPU and torch.cuda.is_available():
device = torch.device('cuda')
if torch.cuda.device_count() <= 1:
RUN_PARALLEL = False
pass
else:
device = torch.device('cpu')
RUN_PARALLEL = False
learning_rate = 1e-3
learning_rate_decay = 0.3
cfg = dict(device=device, learning_rate=learning_rate, learning_rate_decay=learning_rate_decay,
last_observe=10, epochs=10, print_every=10, save_every=2, batch_size=2,
data_locate="/home/tangx2/storage/projects/git/argoverse-api/train/data_10", save_path="./model_ckpt/", # /workspace/argoverse-api/train/data
log_file="./log.txt", tensorboard_path="runs/train_visualization")
argo_dst = ArgoverseForecastDataset(cfg)
train_loader = DataLoader(dataset=argo_dst, batch_size=cfg['batch_size'], shuffle=True, num_workers=0, drop_last=True)
for i, (traj_batch, map_batch) in enumerate(train_loader):
trajectory_batch = traj_batch
batch_size = trajectory_batch.size()[0]
# print(trajectory_batch)
# print(trajectory_batch.size())
# print(batch_size)
break
if __name__ == "__main__":
main()