-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencode_one_dataset.py
86 lines (74 loc) · 2.81 KB
/
encode_one_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import glob
import os
import subprocess
import argparse
POSSIBLE_DATASETS = ['kodak', 'clic20-pro-valid', 'clic22-test', 'jvet', 'vcip2023_4k','vcip_4k_g1','vcip_4k_g2','vcip_4k_g3','vcip_4k_g4']
bpp_offical = {
'I01':0.0015,
'I02':0.0009,
'I03':0.0009,
'I04':0.0005,
'I05':0.0005,
'I06':0.0009,
'I07':0.0015,
'I08':0.0003,
'I09':0.0007,
'I10':0.0009,
'I11':0.0009,
'I12':0.00085,
'I13':0.0002,
'I14':0.001,
'I15':0.00085,
'I16':0.00075,
'I17':0.0007,
'I18':0.0008,
'I19':0.0007,
'I20':0.0007,
}
parser = argparse.ArgumentParser()
parser.add_argument('dataset_name', help=f'Possible values {POSSIBLE_DATASETS}.')
parser.add_argument('--lamda', help='d+lamda*R',default=0.02)
parser.add_argument('--lamda_list', type=list, default=[0.00012,0.0008,0.0008,0.0008,0.00012,0.0008])
args = parser.parse_args()
def lamda_to_str(lamda) :
str_lamda = list()
tmp = lamda
while tmp< 1 :
str_lamda.append(int(tmp * 10))
tmp = tmp * 10
return str_lamda
assert args.dataset_name in POSSIBLE_DATASETS, \
f'Argument must be in {POSSIBLE_DATASETS}. Found {args.dataset_name}!'
# encode images one by one
current_dir_path = os.path.dirname(__file__)
dataset_path = '/media/tly/lihy/workspace/Cool-Chic/dataset'
encoded_image_path = os.path.join(dataset_path,args.dataset_name)
cool_chic_encode_path = os.path.join(current_dir_path, '../src/encode.py')
encoded_images = glob.glob(os.path.join(encoded_image_path,'*.png'))
for encoded_img in encoded_images :
imgname = encoded_img.split("/")[-1].split(".")[0]
output_dir = os.path.join(current_dir_path, args.dataset_name, 'medium_train',f"lamda-{args.lamda}", imgname)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
output_bitstream_path = os.path.join(output_dir, f'{imgname}.bin')
model_save_path = os.path.join(output_dir, f'{imgname}_model.pt')
enc_results_path = os.path.join(output_dir, f'{imgname}_encoder_results.txt')
qstep_results_pkl = os.path.join(output_dir, f'{imgname}_qstep_results.pkl')
if os.path.exists(model_save_path):
print(f'skipped_{imgname}')
continue
print(f'\nencoding image: {encoded_img}')
cmd = f'CUDA_VISIBLE_DEVICES=0 python3 {cool_chic_encode_path} \
--input {encoded_img} \
--output {output_bitstream_path} \
--workdir={output_dir}/ \
--lmbda={args.lamda}\
--start_lr=1e-2\
--layers_synthesis=40-1-linear-relu,3-1-linear-relu,X-3-residual-relu,X-3-residual-none\
--upsampling_kernel_size=8 \
--layers_arm=24,24\
--n_ctx_rowcol=3\
--n_ft_per_res=1,1,1,1,1,1,1 \
--n_itr=50000 \
--n_train_loops=5'
subprocess.call(cmd, shell=True)