-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathshiftReg.ml
126 lines (112 loc) · 3.95 KB
/
shiftReg.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
(** This module allow to communicate with a shift-register **)
(* Source :
- http://blog.idleman.fr/raspberry-pi-20-creer-un-tableau-de-bord-connect-au-net/
- http://www.onsemi.com/pub_link/Collateral/MC74HC595A-D.PDF
*)
open WiringPiOcaml
(** reg : (pin_value = p_v, pin_shift = p_s, pin_apply = p_a). It is
used to contain the informations about connections.
The invert variable is used in order to revert the mode (false = lighted,
true = not lighted). The pulse function is only used with applyReg **)
type reg = {p_v : int; p_s : int; p_a : int; pulse : bool; invert : bool;}
let genReg ?pulse:(pulse = false) ?invert:(invert = false) pin_value pin_shift pin_apply =
{p_v = pin_value; p_s = pin_shift; p_a = pin_apply; pulse; invert}
let write pin value = digitalWrite pin (if value then 1 else 0)
(** The first thing to do is setupPhys (). This function put in OUTPUT
mode the outputs and return back a bool array which represent the output of registers (begining with the first LED of the first shift register) **)
let initReg ?nb_reg:(nb_reg = 1) reg =
pinMode reg.p_v 1; (* mode output *)
pinMode reg.p_s 1;
pinMode reg.p_a 1;
write reg.p_v false;
write reg.p_s false;
write reg.p_a false;
Array.make (8*nb_reg) false (* return back an array for all pieces *)
(** Functions related to basic action of the register **)
let shift reg value =
write reg.p_s false;
write reg.p_v (value <> reg.invert); (* On inverse si besoin *)
write reg.p_s true
let validate reg =
write reg.p_a true;
write reg.p_a false
(** This function apply all modifications to the register in the same time **)
let applyRegAll reg leds =
write reg.p_a false;
for i = (Array.length leds) - 1 downto 0 do
shift reg leds.(i)
done;
validate reg
(** This function opens and closes very quickly each LED, one after the other**)
let applyRegPulse reg leds ?d_t:(d_t = 3000) time =
let t = Unix.gettimeofday () in
let first_time = ref true in
(* Clear the leds *)
write reg.p_a false;
for i = (Array.length leds) - 1 downto 0 do
shift reg false
done;
(* It create a one at the very beginning *)
shift reg true;
while !first_time || Unix.gettimeofday () -. t < time do
for i = 0 to (Array.length leds) - 1 do
(* We add a zero (we need only one true on the line *)
if leds.(i) then begin
(* On valide en attendant un petit coup *)
validate reg;
(* delayMicroseconds d_t; *)
end;
shift reg false;
done;
first_time := false;
shift reg true;
done
(** Generic function which choose the good mode (Pulse or not) and wait.
(time in seconds, float) **)
let applyReg reg leds time =
if reg.pulse then
applyRegPulse reg leds time
else begin
applyRegAll reg leds;
delay (int_of_float (time *. 1000.))
end
(** Don't forget to apply it with applyReg after **)
let clearLeds leds =
Array.iteri (fun i x -> (leds.(i) <- false)) leds
let lightLeds leds =
Array.iteri (fun i x -> (leds.(i) <- true)) leds
let printBoolArray t =
for k = 0 to Array.length t - 1 do
Printf.printf "%b;" t.(k)
done;
Printf.printf "\n%!"
(** This function is usefull to find a LED in a logarithm time **)
let findLedNumber reg ?time_answer:(time_answer = 3) leds0 =
let makeIntervalArray leds a b =
Printf.printf "%d;%d" a b;
Array.iteri
(fun i x -> leds.(i) <- ((a <= i) && (i < b)) )
leds
in
let n = Array.length leds0 in
let leds = Array.make n false in
let i = ref 0 in
let j = ref n in
while !i < (!j - 1) do
let middle = !i + (!j - !i)/2 in
makeIntervalArray leds !i middle;
applyRegAll reg leds;
Printf.printf "\nLighted ? (1 = Yes, other = no) %!";
let res = input_line stdin in
if res = "1" then
j := middle
else
i := middle;
done;
if time_answer > 0 then begin
Printf.printf "\nI think it's this LED : %d.\n%!" !i;
clearLeds leds;
leds.(!i) <- true;
applyRegAll reg leds;
Unix.sleep time_answer
end