-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainforToy.py
374 lines (294 loc) · 12.3 KB
/
TrainforToy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# """
# =================================================
# @Project -> File :AIStudio -> TrainCodeforImageNet.py
# @IDE :PyCharm
# @Author :IsHuuAh
# @Date :2021/8/20 18:16
# @email :[email protected]
# ==================================================
# """
# !/usr/bin/env Python3
# -*- coding: utf-8 -*-
"""
尝试以脚本格式;
"""
# import pkgs;
import paddle
import paddle.nn as nn
from paddle.vision import datasets, transforms
from paddle.io import DataLoader
import numpy as np
import matplotlib.pyplot as plt
import random
import os
import argparse # TODO:以脚本格式获取参量;
from pathlib import Path
import time
# HyperParams;
# path;
IMAGENET_PATH = "./ImageNet/"
CKP_PATH = "./Log/ckp.pdparam"
MODEL_PATH = "./Log/mnasneta1_0_ImageNet.pdparam" # 实际上和CKP_PATH相同;
# random parameters;
SEED = 42
# devices;
DEVICES = paddle.device.get_device()
NUM_CARDS = 0.5
# preprocessing parameters;
BATCH_SIZE = int(128 * NUM_CARDS) # paper里是1024在8张TPU上;
WOKERS = 4
RESIZE_IMG = 256
IMG_SIZE = 224 # TODO:是先resize至256后crop至224;
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]
# optimizer parameters;
OPT_DECAY = 0.9
MOMENTUM = 0.9
OPT_EPSILON = 0.001
# training parameters;
# TODO:这些设置均在单卡上;
BASE_LR = 0.008 * NUM_CARDS # 0.256/32;
DECAY_GAMMA = 0.97
DECAY_EPOCHS = 2.4
LABEL_SMOOTH = 0.1
TRAINING_STEPS = int(3503192 / NUM_CARDS)
NUM_CLASSES = 1000
# screen parameters;
PRINT_FREQ = int(78 / NUM_CARDS)
# set the random seed;
def setRandomSeed(seed: int = 42):
paddle.seed(seed)
np.random.seed(seed)
random.seed(seed)
# a fundamental class for statistics;
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
# hyperparam class;
# class HyperParams():
# pass
#
#
# _argparse = argparse.ArgumentParser(prog='TrainMnasNetA', description='the trainning code for MnasNetA on ImageNet')
# model class;
import MnasNetAllPaddle
# read ImageNet;
def getImageNet(root: str, train: bool = True, transform: transforms.Compose = None, bs: int = BATCH_SIZE,
workers: int = WOKERS):
if train:
path = os.path.join(root, 'ILSVRC2012_img_val')
train_set = datasets.DatasetFolder(root=path, transform=transform)
return DataLoader(train_set, batch_size=bs, shuffle=True, drop_last=False, num_workers=workers, )
else:
path = os.path.join(root, 'ILSVRC2012_img_val')
val_set = datasets.DatasetFolder(root=path, transform=transform)
return DataLoader(val_set, batch_size=bs, shuffle=False, drop_last=False, num_workers=workers, )
# training func;
def trainModel(model, opt, lr_schedule, criterion, cur_steps, train_loader, train_log):
"""
one epoch;
"""
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# set train model;
model.train() # TODO:很重要!!!
# record the time;
time_point = time.time()
# start training for one epoch;
for i, (inp, oup) in enumerate(train_loader):
# TODO:如果中途训练中断,从断点处开始训练;
if i < cur_steps % len(train_loader):
continue
# update current steps;
cur_steps += 1 # TODO:
# measure data loading time
data_time.update(time.time() - time_point)
# set the tensor to gpu;
inp = inp.cuda()
oup = oup.cuda()
oup_smooth = paddle.nn.functional.one_hot(oup, NUM_CLASSES)
oup_smooth = paddle.nn.functional.label_smooth(oup_smooth) # TODO:标签软化;
# compute output;
model_oup = model(inp)
loss = criterion(model_oup, oup_smooth)
# compute gradient and do opt step;
opt.clear_grad()
loss.backward()
opt.step()
model_oup = model_oup.cast('float32')
loss = loss.cast('float32')
# measure accuracy and record loss;
oup = oup.reshape([-1, 1])
prec1 = paddle.metric.accuracy(model_oup, oup.cast('int64'), k=1)
prec5 = paddle.metric.accuracy(model_oup, oup.cast('int64'), k=5)
losses.update(loss.item(), inp.shape[0])
top1.update(prec1.item(), inp.shape[0])
top5.update(prec5.item(), inp.shape[0])
# measure elapsed time
batch_time.update(time.time() - time_point)
time_point = time.time()
if cur_steps < 5 * len(train_loader): # 有5个epoch的warmup;
lr_schedule.step()
elif cur_steps % int(2.4 * len(train_loader)) == 0: # 每2.4epoch更新一次lr;
lr_schedule.step()
if cur_steps % PRINT_FREQ == 0:
print("current lr:\t", opt.get_lr(), "\n")
print('Steps: [{steps}/{all_steps}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
steps=cur_steps, all_steps=TRAINING_STEPS, batch_time=batch_time, data_time=data_time, loss=losses,
top1=top1, top5=top5))
# return;
return cur_steps
# eval func;
def evalModel(model, criterion, val_loader, val_log):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval() # TODO:十分重要!!!
time_point = time.time()
with paddle.no_grad():
for i, (inp, oup) in enumerate(val_loader):
# measure data loading time;
data_time.update(time.time() - time_point)
inp = inp.cuda()
oup = oup.cuda()
# compute output;
model_oup = model(inp)
loss = criterion(model_oup, oup.cast('int64'))
model_oup = model_oup.cast('float32')
loss = loss.cast('float32')
# measure accuracy and record loss
# prec1, prec5 = accuracy(output, target)
oup = oup.reshape([-1, 1])
prec1 = paddle.metric.accuracy(model_oup, oup.cast('int64'), k=1)
prec5 = paddle.metric.accuracy(model_oup, oup.cast('int64'), k=5)
losses.update(loss.item(), inp.shape[0])
top1.update(prec1.item(), inp.shape[0])
top5.update(prec5.item(), inp.shape[0])
# measure elapsed time
batch_time.update(time.time() - time_point)
time_point = time.time()
if i % PRINT_FREQ == 0:
print('Steps: [{steps}/{all_steps}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
steps=i, all_steps=len(val_loader), batch_time=batch_time, data_time=data_time, loss=losses,
top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f}\t'' * Prec@5 {top5.avg:.3f}'.format(top1=top1, top5=top5))
return top1.avg, top5.avg
# save func;
def saveCkp(model, opt, cur_steps, best_prec1, best_prec5, ):
ckp_dict = {}
ckp_dict['cur_lr'] = opt.get_lr()
ckp_dict['opt'] = opt.state_dict()
ckp_dict['cur_steps'] = cur_steps # 存储目前的steps/iterations;
ckp_dict['ckp_model'] = model.state_dict()
ckp_dict['best_prec1'] = best_prec1
ckp_dict['best_prec5'] = best_prec5
paddle.save(ckp_dict, CKP_PATH)
if __name__ == '__main__':
# fix seed;
setRandomSeed(SEED)
# define global params;
cur_steps = 0
best_prec1 = 0
best_prec5 = 0
train_log = {"loss": [], "accuracy": []} # record the log;
val_log = {"loss": [], "accuracy": []}
# get the dataset;
normalize = transforms.Normalize(mean=MEAN, std=STD)
transform_train = transforms.Compose([transforms.Resize(RESIZE_IMG),
transforms.RandomCrop(IMG_SIZE),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize, ])
transform_val = transforms.Compose([transforms.Resize(RESIZE_IMG),
transforms.CenterCrop(IMG_SIZE),
transforms.ToTensor(),
normalize, ])
# TODO:训练和验证的增广不一致;
train_loader = getImageNet(IMAGENET_PATH, True, transform_train, BATCH_SIZE, WOKERS)
val_loader = getImageNet(IMAGENET_PATH, False, transform_val, BATCH_SIZE, WOKERS)
# set the model;
# MnasNetA;
model = MnasNetAllPaddle.mnasneta1_0(num_classes=1000)
model.to(device=DEVICES) # TODO:记得将模型放置在gpu上;
# set the training environment;
# TODO:last_epoch要好好设置;
base_lr = BASE_LR
ckp_loaded = None
ckp_path = Path(CKP_PATH)
if ckp_path.is_file():
print("=> loading checkpoint from '{}'".format(CKP_PATH))
ckp_loaded = paddle.load(CKP_PATH)
base_lr = ckp_loaded['cur_lr']
cur_steps = ckp_loaded['cur_steps']
best_prec1 = ckp_loaded['best_prec1']
best_prec5 = ckp_loaded['best_prec5']
print("=> loaded checkpoint at step {}".format(ckp_loaded['cur_steps']))
else:
print("=> no checkpoint found at '{}'".format(CKP_PATH))
if cur_steps < 5 * len(train_loader):
base_lr = BASE_LR
# TODO:warm up !!!
lr_schedule = paddle.optimizer.lr.ExponentialDecay(learning_rate=base_lr, gamma=DECAY_GAMMA, last_epoch=-1,
verbose=False) # TODO:在使用时计算2.4epochs更新一次;
warmup_schedule = paddle.optimizer.lr.LinearWarmup(lr_schedule, 5 * len(train_loader), 0, BASE_LR, last_epoch=-1,
verbose=False)
opt = paddle.optimizer.RMSProp(learning_rate=warmup_schedule, rho=OPT_DECAY, momentum=MOMENTUM, epsilon=OPT_EPSILON,
parameters=model.parameters())
criterion_train = nn.CrossEntropyLoss(soft_label=True) # TODO:标签要进行软化;
criterion_val = nn.CrossEntropyLoss()
# TODO:加载模型参数;
if ckp_loaded is not None:
model.set_state_dict(ckp_loaded['ckp_model'])
print(warmup_schedule.state_dict())
opt.set_state_dict(ckp_loaded['opt']) # TODO:只用加载opt的权重,LR_Scheduler会自动加载!!!
print(warmup_schedule.state_dict())
print(opt.state_dict()['LR_Scheduler'])
print(ckp_loaded['opt']['LR_Scheduler'])
print('=> resume the model and optimizer')
else:
print('=> got the random initial model and optimizer')
# start training;
while cur_steps < TRAINING_STEPS:
print("TRAIN:\n")
cur_steps = trainModel(model, opt, warmup_schedule, criterion_train, cur_steps, train_loader, train_log)
if cur_steps % len(train_loader) == 0:
print("TEST:\n")
prec1, prec5 = evalModel(model, criterion_val, val_loader, val_log)
if prec1 > best_prec1:
best_prec1 = prec1
best_prec5 = prec5
paddle.save(model.state_dict(), MODEL_PATH) # 存储最优epoch;
saveCkp(model, opt, cur_steps, best_prec1, best_prec5) # 每个epoch后都存储一次ckp;
print("BEST:\n", "Top1:\t", best_prec1, "Top5:\t", best_prec5)
# save the params and model;(finally save)
# 存储一次ckp;
saveCkp(model, opt, cur_steps, best_prec1, best_prec5, )
# 单独存储一次模型;
# paddle.save(model.state_dict(), MODEL_PATH) # 以gpu模式存储的;# TODO:存储不得,可能最后并非最好的;