-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainCodeforImageNet.py
449 lines (356 loc) · 14.8 KB
/
TrainCodeforImageNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
# """
# =================================================
# @Project -> File :AIStudio -> TrainCodeforImageNet.py
# @IDE :PyCharm
# @Author :IsHuuAh
# @Date :2021/8/20 18:16
# @email :[email protected]
# ==================================================
# """
# !/usr/bin/env Python3
# -*- coding: utf-8 -*-
"""
尝试以脚本格式;
"""
# import pkgs;
import paddle
import paddle.nn as nn
from paddle.vision import datasets, transforms
from paddle.io import DataLoader
import paddle.distributed as dist # TODO:分布式训练,单机多卡!
import numpy as np
import matplotlib.pyplot as plt
import random
import os
import argparse # TODO:以脚本格式获取参量;
from pathlib import Path
import time
# 以下是ImageNet数据集预处理;
from scipy import io
import os
import shutil
def move_valimg(val_dir='./ILSVRC2012_img_val', devkit_dir='./ILSVRC2012_devkit_t12'):
"""
move valimg to correspongding folders.
val_id(start from 1) -> ILSVRC_ID(start from 1) -> WIND
organize like:
/val
/n01440764
images
/n01443537
images
.....
"""
# load synset, val ground truth and val images list
synset = io.loadmat(os.path.join(devkit_dir, 'data', 'meta.mat'))
ground_truth = open(os.path.join(devkit_dir, 'data', 'ILSVRC2012_validation_ground_truth.txt'))
lines = ground_truth.readlines()
labels = [int(line[:-1]) for line in lines]
root, _, filenames = next(os.walk(val_dir))
for filename in filenames:
# val image name -> ILSVRC ID -> WIND
val_id = int(filename.split('.')[0].split('_')[-1])
ILSVRC_ID = labels[val_id - 1]
WIND = synset['synsets'][ILSVRC_ID - 1][0][1][0]
print("val_id:%d, ILSVRC_ID:%d, WIND:%s" % (val_id, ILSVRC_ID, WIND))
# move val images
output_dir = os.path.join(root, WIND)
if os.path.isdir(output_dir):
pass
else:
os.mkdir(output_dir)
shutil.move(os.path.join(root, filename), os.path.join(output_dir, filename))
# HyperParams;
# path;
IMAGENET_PATH = "./ImageNet/"
CKP_PATH = "./Log/ckp.pdparam"
MODEL_PATH = "./Log/mnasneta1_0_ImageNet.pdparam" # 实际上和CKP_PATH相同;
# random parameters;
SEED = 42
# devices;
DEVICES = paddle.device.get_device()
NUM_CARDS = 4 # TODO:单机四卡;
# preprocessing parameters;
BATCH_SIZE = int(128 * NUM_CARDS) # paper里是1024在8张TPU上;
WOKERS = 4
RESIZE_IMG = 256
IMG_SIZE = 224 # TODO:是先resize至256后crop至224;
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]
# optimizer parameters;
OPT_DECAY = 0.9
MOMENTUM = 0.9
OPT_EPSILON = 0.001
# training parameters;
# TODO:这些设置均在单卡上;
BASE_LR = 0.008 * NUM_CARDS # 0.256/32;
DECAY_GAMMA = 0.97
DECAY_EPOCHS = 2.4
LABEL_SMOOTH = 0.1
TRAINING_STEPS = int(3503192 / NUM_CARDS)
NUM_CLASSES = 1000
# screen parameters;
PRINT_FREQ = int(10010 / NUM_CARDS)
# set the random seed;
def setRandomSeed(seed: int = 42):
paddle.seed(seed)
np.random.seed(seed)
random.seed(seed)
# a fundamental class for statistics;
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
# hyperparam class;
# class HyperParams():
# pass
#
#
# _argparse = argparse.ArgumentParser(prog='TrainMnasNetA', description='the trainning code for MnasNetA on ImageNet')
# model class;
import MnasNetAllPaddle
# read ImageNet;
def getImageNet(root: str, train: bool = True, transform: transforms.Compose = None, bs: int = BATCH_SIZE,
workers: int = WOKERS):
if train:
path = os.path.join(root, 'ILSVRC2012_img_train')
train_set = datasets.DatasetFolder(root=path, transform=transform)
return DataLoader(train_set, batch_size=bs, shuffle=True, drop_last=False, num_workers=workers, )
else:
path = os.path.join(root, 'ILSVRC2012_img_val')
val_set = datasets.DatasetFolder(root=path, transform=transform)
return DataLoader(val_set, batch_size=bs, shuffle=False, drop_last=False, num_workers=workers, )
# training func;
def trainModel(model, opt, lr_schedule, criterion, cur_steps, train_loader, ):
"""
one epoch;
"""
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# set train model;
model.train() # TODO:很重要!!!
# record the time;
time_point = time.time()
# record the training loss and accuracy;
train_loss = []
train_acc1 = []
train_acc5 = []
# start training for one epoch;
for i, (inp, oup) in enumerate(train_loader):
# TODO:如果中途训练中断,从断点处开始训练;
if i < cur_steps % len(train_loader):
continue
# update current steps;
cur_steps += 1 # TODO:
# measure data loading time
data_time.update(time.time() - time_point)
# set the tensor to gpu;
inp = inp.cuda()
oup = oup.cuda()
oup_smooth = paddle.nn.functional.one_hot(oup, NUM_CLASSES)
oup_smooth = paddle.nn.functional.label_smooth(oup_smooth) # TODO:标签软化;
# compute output;
model_oup = model(inp)
loss = criterion(model_oup, oup_smooth)
# compute gradient and do opt step;
opt.clear_grad()
loss.backward()
opt.step()
model_oup = model_oup.cast('float32')
loss = loss.cast('float32')
# measure accuracy and record loss;
oup = oup.reshape([-1, 1])
prec1 = paddle.metric.accuracy(model_oup, oup.cast('int64'), k=1)
prec5 = paddle.metric.accuracy(model_oup, oup.cast('int64'), k=5)
losses.update(loss.item(), inp.shape[0])
top1.update(prec1.item(), inp.shape[0])
top5.update(prec5.item(), inp.shape[0])
# measure elapsed time
batch_time.update(time.time() - time_point)
time_point = time.time()
if cur_steps < 5 * len(train_loader): # 有5个epoch的warmup;
lr_schedule.step()
elif cur_steps % int(2.4 * len(train_loader)) == 0: # 每2.4epoch更新一次lr;
lr_schedule.step()
if cur_steps % PRINT_FREQ == 0:
print("current lr:\t", opt.get_lr(), "\n")
print('Steps: [{steps}/{all_steps}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
steps=cur_steps, all_steps=TRAINING_STEPS, batch_time=batch_time, data_time=data_time, loss=losses,
top1=top1, top5=top5))
# append the train log;
train_loss.append(losses.avg) # TODO:存储每次迭代后的epoch内的平均值!(不知道论文存储的什么,但是应该差不多;)
train_acc1.append(top1.avg)
train_acc5.append(top5.avg)
# return;
return cur_steps, train_loss, train_acc1, train_acc5
# eval func;
def evalModel(model, criterion, val_loader, ):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval() # TODO:十分重要!!!
# record the valid loss and accuracy;
val_loss = []
val_acc1 = []
val_acc5 = []
time_point = time.time()
# start evaluating for one epoch;
with paddle.no_grad():
for i, (inp, oup) in enumerate(val_loader):
# measure data loading time;
data_time.update(time.time() - time_point)
inp = inp.cuda()
oup = oup.cuda()
# compute output;
model_oup = model(inp)
loss = criterion(model_oup, oup.cast('int64'))
model_oup = model_oup.cast('float32')
loss = loss.cast('float32')
# measure accuracy and record loss
# prec1, prec5 = accuracy(output, target)
oup = oup.reshape([-1, 1])
prec1 = paddle.metric.accuracy(model_oup, oup.cast('int64'), k=1)
prec5 = paddle.metric.accuracy(model_oup, oup.cast('int64'), k=5)
losses.update(loss.item(), inp.shape[0])
top1.update(prec1.item(), inp.shape[0])
top5.update(prec5.item(), inp.shape[0])
# measure elapsed time
batch_time.update(time.time() - time_point)
time_point = time.time()
if i % PRINT_FREQ == 0:
print('Steps: [{steps}/{all_steps}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
steps=i, all_steps=len(val_loader), batch_time=batch_time, data_time=data_time, loss=losses,
top1=top1, top5=top5))
val_loss.append(losses.avg)
val_acc1.append(top1.avg)
val_acc5.append(top5.avg)
print(' * Prec@1 {top1.avg:.3f}\t'' * Prec@5 {top5.avg:.3f}'.format(top1=top1, top5=top5))
return top1.avg, top5.avg, val_loss, val_acc1, val_acc5
# save func;
def saveCkp(model, opt, cur_steps, best_prec1, best_prec5, train_log, val_log, ):
ckp_dict = {}
ckp_dict['cur_lr'] = opt.get_lr()
ckp_dict['opt'] = opt.state_dict()
ckp_dict['cur_steps'] = cur_steps # 存储目前的steps/iterations;
ckp_dict['ckp_model'] = model.state_dict()
ckp_dict['best_prec1'] = best_prec1
ckp_dict['best_prec5'] = best_prec5
ckp_dict['train_log'] = train_log
ckp_dict['val_log'] = val_log
paddle.save(ckp_dict, CKP_PATH)
if __name__ == '__main__':
move_valimg()
# fix seed;
setRandomSeed(SEED)
# 启动多卡环境;
dist.init_parallel_env()
# define global params;
cur_steps = 0
best_prec1 = 0
best_prec5 = 0
train_log = {"train_loss": [], "train_top1": [], "train_top5": []} # record the log;
val_log = {"val_loss": [], "val_top1": [], "val_top5": []}
# get the dataset;
normalize = transforms.Normalize(mean=MEAN, std=STD)
transform_train = transforms.Compose([transforms.Resize(RESIZE_IMG),
transforms.RandomCrop(IMG_SIZE),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize, ])
transform_val = transforms.Compose([transforms.Resize(RESIZE_IMG),
transforms.CenterCrop(IMG_SIZE),
transforms.ToTensor(),
normalize, ])
# TODO:训练和验证的增广不一致;
train_loader = getImageNet(IMAGENET_PATH, True, transform_train, BATCH_SIZE, WOKERS)
val_loader = getImageNet(IMAGENET_PATH, False, transform_val, BATCH_SIZE, WOKERS)
# set the model;
# MnasNetA;
model = MnasNetAllPaddle.mnasneta1_0(num_classes=1000)
model = paddle.DataParallel(model)
model.to(device=DEVICES) # TODO:记得将模型放置在gpu上;
# set the training environment;
# TODO:last_epoch要好好设置;
base_lr = BASE_LR
ckp_loaded = None
ckp_path = Path(CKP_PATH)
if ckp_path.is_file():
print("=> loading checkpoint from '{}'".format(CKP_PATH))
ckp_loaded = paddle.load(CKP_PATH)
base_lr = ckp_loaded['cur_lr']
cur_steps = ckp_loaded['cur_steps']
best_prec1 = ckp_loaded['best_prec1']
best_prec5 = ckp_loaded['best_prec5']
train_log = ckp_loaded['train_log']
val_log = ckp_loaded['val_log']
print("=> loaded checkpoint at step {}".format(ckp_loaded['cur_steps']))
else:
print("=> no checkpoint found at '{}'".format(CKP_PATH))
if cur_steps < 5 * len(train_loader):
base_lr = BASE_LR
# TODO:warm up !!!
lr_schedule = paddle.optimizer.lr.ExponentialDecay(learning_rate=base_lr, gamma=DECAY_GAMMA, last_epoch=-1,
verbose=True) # TODO:在使用时计算2.4epochs更新一次;
warmup_schedule = paddle.optimizer.lr.LinearWarmup(lr_schedule, 5 * len(train_loader), 0, BASE_LR, last_epoch=-1,
verbose=True)
opt = paddle.optimizer.RMSProp(learning_rate=warmup_schedule, rho=OPT_DECAY, momentum=MOMENTUM, epsilon=OPT_EPSILON,
parameters=model.parameters())
criterion_train = nn.CrossEntropyLoss(soft_label=True) # TODO:标签要进行软化;
criterion_val = nn.CrossEntropyLoss()
# TODO:加载模型参数;
if ckp_loaded is not None:
model.set_state_dict(ckp_loaded['ckp_model'])
opt.set_state_dict(ckp_loaded['opt'])
print('=> resume the model and optimizer')
else:
print('=> got the random initial model and optimizer')
# start training;
while cur_steps < TRAINING_STEPS:
print("TRAIN:\n")
cur_steps, train_loss, train_acc1, train_acc5 = trainModel(model, opt, warmup_schedule, criterion_train,
cur_steps, train_loader, )
train_log['train_loss'].append(train_loss)
train_log['train_top1'].append(train_acc1)
train_log['train_top5'].append(train_acc5)
if cur_steps % len(train_loader) == 0:
print("TEST:\n")
prec1, prec5, val_loss, val_acc1, val_acc5 = evalModel(model, criterion_val, val_loader, )
val_log['val_loss'].append(val_loss)
val_log['val_top1'].append(val_acc1)
val_log['val_top5'].append(val_acc5)
if prec1 > best_prec1:
best_prec1 = prec1
best_prec5 = prec5
paddle.save(model.state_dict(), MODEL_PATH) # 存储最优epoch;
saveCkp(model, opt, cur_steps, best_prec1, best_prec5, train_log, val_log, ) # 每个epoch后都存储一次ckp;
# save the params and model;(finally save)
# 存储一次ckp;
saveCkp(model, opt, cur_steps, best_prec1, best_prec5, train_log, val_log, )
# 单独存储一次模型;
# paddle.save(model.state_dict(), MODEL_PATH) # 以gpu模式存储的;# TODO:存储不得,可能最后并非最好的;