-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathmodel.py
executable file
·611 lines (475 loc) · 23.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
from __future__ import division
import os
import time
import math
from glob import glob
import tensorflow as tf
import numpy as np
from six.moves import xrange
from ops import *
from utils import *
def conv_out_size_same(size, stride):
return int(math.ceil(float(size) / float(stride)))
class DCGAN(object):
def __init__(self, sess, input_height=108, input_width=108, crop=True,
batch_size=64, sample_num = 64, output_height=64, output_width=64,
y_dim=None, z_dim=100, gf_dim=64, df_dim=64,
gfc_dim=1024, dfc_dim=1024, c_dim=3, dataset_name='default',
input_fname_pattern='*.jpg', test_batch_size = 1, checkpoint_dir=None, sample_dir=None, test_dir = None):
"""
Args:
sess: TensorFlow session
batch_size: The size of batch. Should be specified before training.
y_dim: (optional) Dimension of dim for y. [None]
z_dim: (optional) Dimension of dim for Z. [100]
gf_dim: (optional) Dimension of gen filters in first conv layer. [64]
df_dim: (optional) Dimension of discrim filters in first conv layer. [64]
gfc_dim: (optional) Dimension of gen units for for fully connected layer. [1024]
dfc_dim: (optional) Dimension of discrim units for fully connected layer. [1024]
c_dim: (optional) Dimension of image color. For grayscale input, set to 1. [3]
"""
self.sess = sess
self.crop = crop
self.batch_size = batch_size
self.test_batch_size = test_batch_size
self.sample_num = sample_num
self.input_height = input_height
self.input_width = input_width
self.output_height = output_height
self.output_width = output_width
self.y_dim = y_dim
self.z_dim = z_dim
self.gf_dim = gf_dim
self.df_dim = df_dim
self.gfc_dim = gfc_dim
self.dfc_dim = dfc_dim
self.dataset_name = dataset_name
self.input_fname_pattern = input_fname_pattern
self.checkpoint_dir = checkpoint_dir
self.test_dir = os.path.join('./',test_dir)
if self.dataset_name == 'mnist':
self.data_X, self.data_y = self.load_mnist()
self.c_dim = self.data_X[0].shape[-1]
else:
self.data = glob(os.path.join("./data", self.dataset_name, self.input_fname_pattern))
#Check number of channels
imreadImg = imread(self.data[0])
if len(imreadImg.shape) >= 3: #check if image is a non-grayscale image by checking channel number
self.c_dim = imread(self.data[0]).shape[-1]
else:
self.c_dim = 1
self.grayscale = (self.c_dim == 1)
self.build_model()
def build_model(self):
# batch normalization : deals with poor initialization helps gradient flow
self.d_bn1 = batch_norm(name='d_bn1')
self.d_bn2 = batch_norm(name='d_bn2')
if not self.y_dim:
self.d_bn3 = batch_norm(name='d_bn3')
self.g_bn0 = batch_norm(name='g_bn0')
self.g_bn1 = batch_norm(name='g_bn1')
self.g_bn2 = batch_norm(name='g_bn2')
if not self.y_dim:
self.g_bn3 = batch_norm(name='g_bn3')
#placeholders
if self.y_dim:
self.y = tf.placeholder(tf.float32, [self.batch_size, self.y_dim], name='y')
else:
self.y = None
if self.crop: #for training
image_dims = [self.output_height, self.output_width, self.c_dim]
else: #for test
image_dims = [self.input_height, self.input_width, self.c_dim]
self.inputs = tf.placeholder(
tf.float32, [self.batch_size] + image_dims, name='real_images')
inputs = self.inputs
self.z = tf.placeholder(tf.float32, [None, self.z_dim], name='z')
self.z_sum = histogram_summary("z", self.z)
#Construct Generator and Discriminators
self.G = self.generator(self.z, self.y)
self.D, self.D_logits = self.discriminator(inputs, self.y, reuse=False)
self.sampler = self._sampler(self.z, self.y)
self.D_, self.D_logits_ = self.discriminator(self.G, self.y, reuse=True)
#summary op.
self.d_sum = histogram_summary("d", self.D)
self.d__sum = histogram_summary("d_", self.D_)
self.G_sum = image_summary("G", self.G)
#Create Loss Functions
def sigmoid_cross_entropy_with_logits(x, y):
return tf.nn.sigmoid_cross_entropy_with_logits(logits=x, labels=y)
self.d_loss_real = tf.reduce_mean(
sigmoid_cross_entropy_with_logits(self.D_logits, tf.ones_like(self.D)))
self.d_loss_fake = tf.reduce_mean(
sigmoid_cross_entropy_with_logits(self.D_logits_, tf.zeros_like(self.D_)))
self.g_loss = tf.reduce_mean(
sigmoid_cross_entropy_with_logits(self.D_logits_, tf.ones_like(self.D_)))
#summary op.
self.d_loss_real_sum = scalar_summary("d_loss_real", self.d_loss_real)
self.d_loss_fake_sum = scalar_summary("d_loss_fake", self.d_loss_fake)
#total loss
self.d_loss = self.d_loss_real + self.d_loss_fake
#summary op.
self.g_loss_sum = scalar_summary("g_loss", self.g_loss)
self.d_loss_sum = scalar_summary("d_loss", self.d_loss)
t_vars = tf.trainable_variables()
self.d_vars = [var for var in t_vars if 'd_' in var.name]
self.g_vars = [var for var in t_vars if 'g_' in var.name]
self.saver = tf.train.Saver()
def train(self, config):
d_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1) \
.minimize(self.d_loss, var_list=self.d_vars)
g_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1) \
.minimize(self.g_loss, var_list=self.g_vars)
tf.global_variables_initializer().run()
#summary_op: merge summary
self.g_sum = merge_summary([self.z_sum, self.d__sum,
self.G_sum, self.d_loss_fake_sum, self.g_loss_sum])
self.d_sum = merge_summary(
[self.z_sum, self.d_sum, self.d_loss_real_sum, self.d_loss_sum])
#Create Tensorboard
self.writer = SummaryWriter("./logs", self.sess.graph)
#Create Sample Benchmarks for monitoring of train results: use same random noises and real-images
sample_z = np.random.uniform(-1, 1, size=(self.sample_num , self.z_dim))
if config.dataset == 'mnist':
sample_inputs = self.data_X[0:self.sample_num]
sample_labels = self.data_y[0:self.sample_num]
else:
sample_files = self.data[0:self.sample_num] #name_list
sample = [
get_image(sample_file,
input_height=self.input_height,
input_width=self.input_width,
resize_height=self.output_height,
resize_width=self.output_width,
crop=self.crop,
grayscale=self.grayscale) for sample_file in sample_files]
if (self.grayscale):
sample_inputs = np.array(sample).astype(np.float32)[:, :, :, None]
else:
sample_inputs = np.array(sample).astype(np.float32)
counter = 1
start_time = time.time()
could_load, checkpoint_counter = self.load(self.checkpoint_dir)
if could_load:
counter = checkpoint_counter
print(" [*] Load SUCCESS")
else:
print(" [!] Load failed...")
if config.dataset == 'mnist':
batch_idxs = min(len(self.data_X), config.train_size) // config.batch_size #config.train_size: default is np.inf
sample_feed_dict = {self.z: sample_z, self.inputs: sample_inputs, self.y:sample_labels}
else:
batch_idxs = min(len(self.data), config.train_size) // config.batch_size
sample_feed_dict = {self.z: sample_z, self.inputs: sample_inputs}
for epoch in xrange(config.epoch):
for idx in xrange(0, batch_idxs):
#Prepare batch data for learning
if config.dataset == 'mnist':
batch_images = self.data_X[idx*config.batch_size:(idx+1)*config.batch_size]
batch_labels = self.data_y[idx*config.batch_size:(idx+1)*config.batch_size]
else:
batch_files = self.data[idx*config.batch_size:(idx+1)*config.batch_size]
batch = [ get_image(batch_file, input_height=self.input_height, input_width=self.input_width, resize_height=self.output_height, resize_width=self.output_width, crop=self.crop, grayscale=self.grayscale) for batch_file in batch_files]
if self.grayscale:
batch_images = np.array(batch).astype(np.float32)[:, :, :, None]
else:
batch_images = np.array(batch).astype(np.float32)
#Prepare batch random noises for learning
batch_z = np.random.uniform(-1, 1, [config.batch_size, self.z_dim]).astype(np.float32)
#Make feed dictionary
if config.dataset == 'mnist':
d_feed_dict = {self.inputs: batch_images, self.z: batch_z, self.y: batch_labels}
d_fake_feed_dict = {self.z: batch_z, self.y: batch_labels}
d_real_feed_dict = {self.inputs: batch_images, self.y: batch_labels}
g_feed_dict = {self.z: batch_z, self.y: batch_labels}
else:
d_feed_dict = {self.inputs: batch_images, self.z: batch_z}
d_fake_feed_dict = {self.z: batch_z}
d_real_feed_dict = {self.inputs: batch_images}
g_feed_dict = {self.z:batch_z}
#Run Optimization and Summary Operation of Discriminator
_, summary_str = self.sess.run([d_optim, self.d_sum], feed_dict = d_feed_dict)
self.writer.add_summary(summary_str, counter)
#Run Optimization and Summary Operation of Generator
_, summary_str = self.sess.run([g_optim, self.g_sum], feed_dict = g_feed_dict)
self.writer.add_summary(summary_str, counter)
# Run g_optim twice to make sure that d_loss does not go to zero (different from paper)
_, summary_str = self.sess.run([g_optim, self.g_sum], feed_dict = g_feed_dict)
self.writer.add_summary(summary_str, counter)
# Calculate Loss Values of Discriminator and Generator
errD_fake = self.d_loss_fake.eval(feed_dict = d_fake_feed_dict)
errD_real = self.d_loss_real.eval(feed_dict = d_real_feed_dict)
errG = self.g_loss.eval(feed_dict = g_feed_dict)
counter += 1
print("Epoch: [%2d] [%4d/%4d] time: %4.4f, d_loss: %.8f, g_loss: %.8f" \
% (epoch, idx, batch_idxs, time.time() - start_time, errD_fake+errD_real, errG))
if np.mod(counter, 100) == 1:
samples, d_loss, g_loss = self.sess.run([self.sampler, self.d_loss, self.g_loss], feed_dict = sample_feed_dict)
save_images(samples, image_manifold_size(samples.shape[0]),
'./{}/train_{:02d}_{:04d}.png'.format(config.sample_dir, epoch, idx))
print("[Sample] d_loss: %.8f, g_loss: %.8f" % (d_loss, g_loss))
if np.mod(counter, 500) == 2:
self.save(config.checkpoint_dir, counter)
def discriminator(self, image, y=None, reuse=False, batch_size = None):
if batch_size == None: batch_size = self.batch_size
with tf.variable_scope("discriminator") as scope:
if reuse:
scope.reuse_variables()
if not self.y_dim:
h0 = leak_relu(conv2d(image, self.df_dim, name='d_h0_conv'))
h1 = leak_relu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
h2 = leak_relu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))
h3 = leak_relu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))
#h4 = linear(tf.contrib.layers.flatten(h3),1,'d_h4_lin')
h4 = linear(tf.reshape(h3, [batch_size, -1]), 1, 'd_h4_lin')
return tf.nn.sigmoid(h4), h4
else:
yb = tf.reshape(y, [batch_size, 1, 1, self.y_dim])
x = conv_cond_concat(image, yb)
h0 = leak_relu(conv2d(x, self.c_dim + self.y_dim, name='d_h0_conv'))
h0 = conv_cond_concat(h0, yb)
h1 = leak_relu(self.d_bn1(conv2d(h0, self.df_dim + self.y_dim, name='d_h1_conv')))
h1 = tf.reshape(h1, [batch_size, -1]) #flatten
h1 = concat([h1, y], 1)
h2 = leak_relu(self.d_bn2(linear(h1, self.dfc_dim, 'd_h2_lin')))
h2 = concat([h2, y], 1)
h3 = linear(h2, 1, 'd_h3_lin')
return tf.nn.sigmoid(h3), h3
def feature_match_layer(self, image, y=None, reuse=False, batch_size = None):
if batch_size == None: batch_size = self.batch_size
with tf.variable_scope("discriminator") as scope:
if reuse:
scope.reuse_variables()
if not self.y_dim:
h0 = leak_relu(conv2d(image, self.df_dim, name='d_h0_conv'))
h1 = leak_relu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
h2 = leak_relu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))
h3 = leak_relu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))
return h3
else:
yb = tf.reshape(y, [-1, 1, 1, self.y_dim])
x = conv_cond_concat(image, yb)
h0 = leak_relu(conv2d(x, self.c_dim + self.y_dim, name='d_h0_conv'))
h0 = conv_cond_concat(h0, yb)
h1 = leak_relu(self.d_bn1(conv2d(h0, self.df_dim + self.y_dim, name='d_h1_conv')))
h1 = tf.reshape(h1, [batch_size, -1]) #flatten
h1 = concat([h1, y], 1)
h2 = leak_relu(self.d_bn2(linear(h1, self.dfc_dim, 'd_h2_lin')))
return h2
def generator(self, z, y=None):
with tf.variable_scope("generator") as scope:
if not self.y_dim:
s_h, s_w = self.output_height, self.output_width
s_h2, s_w2 = conv_out_size_same(s_h, 2), conv_out_size_same(s_w, 2)
s_h4, s_w4 = conv_out_size_same(s_h2, 2), conv_out_size_same(s_w2, 2)
s_h8, s_w8 = conv_out_size_same(s_h4, 2), conv_out_size_same(s_w4, 2)
s_h16, s_w16 = conv_out_size_same(s_h8, 2), conv_out_size_same(s_w8, 2)
# project `z` and reshape
self.z_, self.h0_w, self.h0_b = linear(
z, self.gf_dim*8*s_h16*s_w16, 'g_h0_lin', with_w=True)
self.h0 = tf.reshape(
self.z_, [-1, s_h16, s_w16, self.gf_dim * 8])
h0 = tf.nn.relu(self.g_bn0(self.h0))
self.h1, self.h1_w, self.h1_b = deconv2d(
h0, [self.batch_size, s_h8, s_w8, self.gf_dim*4], name='g_h1', with_w=True)
h1 = tf.nn.relu(self.g_bn1(self.h1))
h2, self.h2_w, self.h2_b = deconv2d(
h1, [self.batch_size, s_h4, s_w4, self.gf_dim*2], name='g_h2', with_w=True)
h2 = tf.nn.relu(self.g_bn2(h2))
h3, self.h3_w, self.h3_b = deconv2d(
h2, [self.batch_size, s_h2, s_w2, self.gf_dim*1], name='g_h3', with_w=True)
h3 = tf.nn.relu(self.g_bn3(h3))
h4, self.h4_w, self.h4_b = deconv2d(
h3, [self.batch_size, s_h, s_w, self.c_dim], name='g_h4', with_w=True)
return tf.nn.tanh(h4)
else:
s_h, s_w = self.output_height, self.output_width
s_h2, s_h4 = int(s_h/2), int(s_h/4)
s_w2, s_w4 = int(s_w/2), int(s_w/4)
# yb = tf.expand_dims(tf.expand_dims(y, 1),2)
yb = tf.reshape(y, [self.batch_size, 1, 1, self.y_dim])
z = concat([z, y], 1)
h0 = tf.nn.relu(
self.g_bn0(linear(z, self.gfc_dim, 'g_h0_lin')))
h0 = concat([h0, y], 1)
h1 = tf.nn.relu(self.g_bn1(
linear(h0, self.gf_dim*2*s_h4*s_w4, 'g_h1_lin')))
h1 = tf.reshape(h1, [self.batch_size, s_h4, s_w4, self.gf_dim * 2])
h1 = conv_cond_concat(h1, yb)
h2 = tf.nn.relu(self.g_bn2(deconv2d(h1,
[self.batch_size, s_h2, s_w2, self.gf_dim * 2], name='g_h2')))
h2 = conv_cond_concat(h2, yb)
return tf.nn.sigmoid(
deconv2d(h2, [self.batch_size, s_h, s_w, self.c_dim], name='g_h3'))
def _sampler(self, z, y=None, batch_size = None):
if batch_size == None:
batch_size = self.batch_size
with tf.variable_scope("generator") as scope:
scope.reuse_variables()
if not self.y_dim:
s_h, s_w = self.output_height, self.output_width
s_h2, s_w2 = conv_out_size_same(s_h, 2), conv_out_size_same(s_w, 2)
s_h4, s_w4 = conv_out_size_same(s_h2, 2), conv_out_size_same(s_w2, 2)
s_h8, s_w8 = conv_out_size_same(s_h4, 2), conv_out_size_same(s_w4, 2)
s_h16, s_w16 = conv_out_size_same(s_h8, 2), conv_out_size_same(s_w8, 2)
# project `z` and reshape
h0 = tf.reshape(
linear(z, self.gf_dim*8*s_h16*s_w16, 'g_h0_lin'),
[-1, s_h16, s_w16, self.gf_dim * 8])
h0 = tf.nn.relu(self.g_bn0(h0, train=False))
h1 = deconv2d(h0, [batch_size, s_h8, s_w8, self.gf_dim*4], name='g_h1')
h1 = tf.nn.relu(self.g_bn1(h1, train=False))
h2 = deconv2d(h1, [batch_size, s_h4, s_w4, self.gf_dim*2], name='g_h2')
h2 = tf.nn.relu(self.g_bn2(h2, train=False))
h3 = deconv2d(h2, [batch_size, s_h2, s_w2, self.gf_dim*1], name='g_h3')
h3 = tf.nn.relu(self.g_bn3(h3, train=False))
h4 = deconv2d(h3, [batch_size, s_h, s_w, self.c_dim], name='g_h4')
return tf.nn.tanh(h4)
else:
s_h, s_w = self.output_height, self.output_width
s_h2, s_h4 = int(s_h/2), int(s_h/4)
s_w2, s_w4 = int(s_w/2), int(s_w/4)
# yb = tf.reshape(y, [-1, 1, 1, self.y_dim])
yb = tf.reshape(y, [self.batch_size, 1, 1, self.y_dim])
z = concat([z, y], 1)
h0 = tf.nn.relu(self.g_bn0(linear(z, self.gfc_dim, 'g_h0_lin'), train=False))
h0 = concat([h0, y], 1)
h1 = tf.nn.relu(self.g_bn1(
linear(h0, self.gf_dim*2*s_h4*s_w4, 'g_h1_lin'), train=False))
h1 = tf.reshape(h1, [self.batch_size, s_h4, s_w4, self.gf_dim * 2])
h1 = conv_cond_concat(h1, yb)
h2 = tf.nn.relu(self.g_bn2(
deconv2d(h1, [self.batch_size, s_h2, s_w2, self.gf_dim * 2], name='g_h2'), train=False))
h2 = conv_cond_concat(h2, yb)
return tf.nn.sigmoid(deconv2d(h2, [self.batch_size, s_h, s_w, self.c_dim], name='g_h3'))
def get_test_data(self):
self.test_data_names = glob(self.test_dir+'/*.*')
batch = [get_image(name, input_height=self.input_height, input_width = self.input_width, resize_height = self.output_height, resize_width = self.output_width, crop = self.crop, grayscale=self.grayscale) for name in self.test_data_names]
if self.grayscale:
batch_images = np.array(batch).astype(np.float32)[:,:,:,None]
else:
batch_images = np.array(batch).astype(np.float32)
#print np.shape(batch_images)
self.test_data = batch_images
print "[*] test data for anomaly detection is loaded"
def anomaly_detector(self, ano_para=0.1, dis_loss='feature'):
self.get_test_data()
#with variable_scope("anomaly_detector"):
if self.y_dim:
self.ano_y = tf.placeholder(tf.float32, [self.test_batch_size, self.y_dim], name='y')
else:
self.y = None
if self.crop:
image_dims = [self.output_height, self.output_width, self.c_dim]
else: #for test
image_dims = [self.input_height, self.input_width, self.c_dim]
self.test_inputs = tf.placeholder(tf.float32, [1] + image_dims, name='test_images')
test_inputs = self.test_inputs
self.ano_z = tf.get_variable('ano_z', shape = [1, self.z_dim], dtype = tf.float32,
initializer = tf.random_uniform_initializer(minval=-1, maxval=1, dtype=tf.float32))
self.ano_y = None
self.ano_G = self._sampler(self.ano_z, self.ano_y, batch_size=1)
self.res_loss = tf.reduce_mean(
tf.reduce_sum(tf.abs(tf.subtract(test_inputs, self.ano_G))))
#Create Anomaly Score
if dis_loss == 'feature': # if discrimination loss with feature matching (same with paper)
dis_f_z, dis_f_input = self.feature_match_layer(self.ano_G, self.ano_y, reuse=True,batch_size=1), self.feature_match_layer(test_inputs, self.ano_y, reuse=True, batch_size=1)
self.dis_loss = tf.reduce_mean(
tf.reduce_sum(tf.abs(tf.subtract(dis_f_z, dis_f_input))))
else: # if dis_loss with original generator's loss in DCGAN
test_D, test_D_logits_ = self.discriminator(ano_G, ano_y, reuse=True, batch_size=1)
self.dis_loss = tf.reduce_mean(
sigmoid_cross_entropy_with_logits(test_D_logits_, tf.ones_like(test_D)))
self.anomaly_score = (1. - ano_para)* self.res_loss + ano_para* self.dis_loss
t_vars = tf.trainable_variables()
self.z_vars = [var for var in t_vars if 'ano_z' in var.name]
print test_inputs, self.ano_G, dis_f_z, dis_f_input
def train_anomaly_detector(self, config, test_data, test_data_name):
print "Filename: ", test_data_name, "Anomaly is detecting"
print np.shape(test_data)
#self.sess.run(self.ano_z.initializer)
z_optim = tf.train.AdamOptimizer(config.test_learning_rate, beta1=config.beta1) \
.minimize(self.anomaly_score, var_list = self.z_vars)
initialize_uninitialized(self.sess)
for epoch in range(config.test_epoch):
if not self.y_dim:
feed_dict = {self.test_inputs: test_data}
else:
print "Not yet prepared anomaly detection model of MNIST dataset"
feed_dict = {}
_, ano_score, res_loss = self.sess.run([z_optim, self.anomaly_score, self.res_loss], feed_dict = feed_dict)
print("Epoch: [{:02d}], anomaly score: {:.8f}, res loss: {:.8f}"\
.format(epoch, ano_score, res_loss))
save_epoch = [0, config.test_epoch/2, config.test_epoch-1]
if epoch in save_epoch:
samples = self.sess.run(self.ano_G)
errors = samples-test_data
print np.shape(samples)
samples = np.squeeze(samples)
samples = (np.array(samples)+1)*127.5
if not self.grayscale:
errors = np.mean(np.squeeze(errors),axis=2)
errors = (np.array(errors)+1)*127.5
_path = './test_data/'
path = os.path.join(_path, config.test_result_dir)
if not os.path.isdir(path):
os.mkdir(path)
filename = ['AD_'+str(epoch)+'_'+test_data_name.split('/')[-1], 'AD_error_'+str(epoch)+'_'+test_data_name.split('/')[-1]]
scipy.misc.imsave(os.path.join(path,filename[0]),samples)
scipy.misc.imsave(os.path.join(path,filename[1]),errors)
#np.save('./{}/test_error_{}_{:02d}.png'.format(config.test_dir, test_data_name, epoch), errors)
def load_mnist(self):
data_dir = os.path.join("./data", self.dataset_name)
fd = open(os.path.join(data_dir,'train-images-idx3-ubyte'))
loaded = np.fromfile(file=fd,dtype=np.uint8)
trX = loaded[16:].reshape((60000,28,28,1)).astype(np.float)
fd = open(os.path.join(data_dir,'train-labels-idx1-ubyte'))
loaded = np.fromfile(file=fd,dtype=np.uint8)
trY = loaded[8:].reshape((60000)).astype(np.float)
fd = open(os.path.join(data_dir,'t10k-images-idx3-ubyte'))
loaded = np.fromfile(file=fd,dtype=np.uint8)
teX = loaded[16:].reshape((10000,28,28,1)).astype(np.float)
fd = open(os.path.join(data_dir,'t10k-labels-idx1-ubyte'))
loaded = np.fromfile(file=fd,dtype=np.uint8)
teY = loaded[8:].reshape((10000)).astype(np.float)
trY = np.asarray(trY)
teY = np.asarray(teY)
X = np.concatenate((trX, teX), axis=0)
y = np.concatenate((trY, teY), axis=0).astype(np.int)
seed = 547
np.random.seed(seed)
np.random.shuffle(X)
np.random.seed(seed)
np.random.shuffle(y)
#Make one-hot
y_vec = np.zeros((len(y), self.y_dim), dtype=np.float)
index_offset = np.arange(len(y)) * self.y_dim
y_vec.flat[index_offset + y.ravel()] = 1
return X/255.,y_vec
@property
def model_dir(self):
return "{}_{}_{}_{}".format(
self.dataset_name, self.batch_size,
self.output_height, self.output_width)
def save(self, checkpoint_dir, step):
model_name = "DCGAN.model"
checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
self.saver.save(self.sess,
os.path.join(checkpoint_dir, model_name),
global_step=step)
def load(self, checkpoint_dir):
import re
print(" [*] Reading checkpoints...")
checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir)
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
counter = int(next(re.finditer("(\d+)(?!.*\d)",ckpt_name)).group(0))
print(" [*] Success to read {}".format(ckpt_name))
return True, counter
else:
print(" [*] Failed to find a checkpoint")
return False, 0