-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathmain.py
executable file
·124 lines (102 loc) · 4.93 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import scipy.misc
import numpy as np
from model import DCGAN
from utils import pp, visualize, show_all_variables
import tensorflow as tf
#arguments parsers
flags = tf.app.flags
#name, defulat value, description
#below are for train and test
flags.DEFINE_integer("epoch", 25, "Epoch to train [25]")
flags.DEFINE_integer("test_epoch", 100, "Epoch for latent mapping in anomaly detection to train [100]")
flags.DEFINE_float("learning_rate", 0.0002, "Learning rate of for adam [0.0002]")
flags.DEFINE_float("beta1", 0.5, "Momentum term of adam [0.5]")
flags.DEFINE_float("test_learning_rate", 0.001, "Learning rate for finding latent variable z [0.05]")
flags.DEFINE_integer("train_size", np.inf, "The size of train images [np.inf]")
flags.DEFINE_boolean("train", False, "True for training, False for testing [False]")
flags.DEFINE_boolean("anomaly_test", False, "True for anomaly test in test directory, not anomaly test [False]")
flags.DEFINE_boolean("visualize", False, "True for visualizing, False for nothing [False]")
#below are for model construction
flags.DEFINE_integer("batch_size", 64, "The size of batch images [64]")
flags.DEFINE_integer("test_batch_size", 1, "The size of test batch images in anomaly detection to [1]")
flags.DEFINE_integer("input_height", 108, "The size of image to use (will be center cropped). [108]")
flags.DEFINE_integer("input_width", None, "The size of image to use (will be center cropped). If None, same value with input_height [None]")
flags.DEFINE_integer("output_height", 64, "The size of the output images to produce [64]")
flags.DEFINE_integer("output_width", None, "The size of the output images to produce. ")
flags.DEFINE_string("dataset", "celebA", "The name of dataset [celebA, mnist, lsun]")
flags.DEFINE_string("input_fname_pattern", "*.jpg", "Glob pattern of filename of input images [*]")
flags.DEFINE_string("checkpoint_dir", "checkpoint", "Directory name to save the checkpoints [checkpoint]")
flags.DEFINE_string("sample_dir", "samples", "Directory name to save the image samples [samples]")
flags.DEFINE_string("test_dir", "test_data", "Directory name to load the anomaly detstion result [test_data]")
flags.DEFINE_string("test_result_dir", "test_result", "Directory name to save the anomaly test result [test_data/test_result]")
flags.DEFINE_boolean("crop", False, "True for training, False for testing [False]")
flags.DEFINE_integer("generate_test_images", 100, "Number of images to generate during test. [100]")
FLAGS = flags.FLAGS
def main(_):
pp.pprint(flags.FLAGS.__flags)
if FLAGS.input_width is None:
FLAGS.input_width = FLAGS.input_height
if FLAGS.output_width is None:
FLAGS.output_width = FLAGS.output_height
if not os.path.exists(FLAGS.checkpoint_dir):
os.makedirs(FLAGS.checkpoint_dir)
if not os.path.exists(FLAGS.sample_dir):
os.makedirs(FLAGS.sample_dir)
run_config = tf.ConfigProto()
run_config.gpu_options.allow_growth=True
#run_config.gpu_options.per_process_gpu_memory_fraction = 0.4
with tf.Session(config=run_config) as sess:
if FLAGS.dataset == 'mnist':
dcgan = DCGAN(
sess,
input_width=FLAGS.input_width,
input_height=FLAGS.input_height,
output_width=FLAGS.output_width,
output_height=FLAGS.output_height,
batch_size=FLAGS.batch_size,
test_batch_size=FLAGS.test_batch_size,
sample_num=FLAGS.batch_size,
y_dim=10,
z_dim=FLAGS.generate_test_images,
dataset_name=FLAGS.dataset,
input_fname_pattern=FLAGS.input_fname_pattern,
crop=FLAGS.crop,
checkpoint_dir=FLAGS.checkpoint_dir,
sample_dir=FLAGS.sample_dir,
test_dir = FLAGS.test_dir)
else:
dcgan = DCGAN(
sess,
input_width=FLAGS.input_width,
input_height=FLAGS.input_height,
output_width=FLAGS.output_width,
output_height=FLAGS.output_height,
batch_size=FLAGS.batch_size,
test_batch_size=FLAGS.test_batch_size,
sample_num=FLAGS.batch_size,
z_dim=FLAGS.generate_test_images,
dataset_name=FLAGS.dataset,
input_fname_pattern=FLAGS.input_fname_pattern,
crop=FLAGS.crop,
checkpoint_dir=FLAGS.checkpoint_dir,
sample_dir=FLAGS.sample_dir,
test_dir = FLAGS.test_dir)
show_all_variables()
if FLAGS.train:
dcgan.train(FLAGS)
else:
if not dcgan.load(FLAGS.checkpoint_dir)[0]:
raise Exception("[!] Train a model first, then run test mode")
if FLAGS.anomaly_test:
dcgan.anomaly_detector()
assert len(dcgan.test_data_names) > 0
for idx in range(len(dcgan.test_data_names)):
test_input = np.expand_dims(dcgan.test_data[idx],axis=0)
test_name = dcgan.test_data_names[idx]
dcgan.train_anomaly_detector(FLAGS, test_input, test_name)
# Below is codes for visualization
#OPTION = 1
#visualize(sess, dcgan, FLAGS, OPTION)
if __name__ == '__main__':
tf.app.run()