diff --git a/predicators/approaches/active_sampler_learning_approach.py b/predicators/approaches/active_sampler_learning_approach.py index 25d73340ab..7df01e0ac2 100644 --- a/predicators/approaches/active_sampler_learning_approach.py +++ b/predicators/approaches/active_sampler_learning_approach.py @@ -753,9 +753,10 @@ def _wrap_object_specific_samplers_with_epsilon( base_sampler: NSRTSampler, ) -> NSRTSamplerWithEpsilonIndicator: - def _wrapped_sampler(state: State, goal: Set[GroundAtom], - rng: np.random.Generator, - objects: Sequence[Object]) -> Tuple[Array, bool]: + def _wrapped_sampler( + state: State, goal: Set[GroundAtom], rng: np.random.Generator, + objects: Sequence[Object] + ) -> Tuple[Array, bool]: # pragma: no cover objects_tuple = tuple(objects) # If we haven't yet learned a object-specific sampler for these objects # then use the base sampler. Treat the output as if it was greedy