-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkalman_1d_test.go
144 lines (124 loc) · 2.46 KB
/
kalman_1d_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
package kalman_filter
import (
"encoding/csv"
"fmt"
"math/rand"
"os"
"testing"
)
func TestKalman1D(t *testing.T) {
rand.Seed(1337)
// Just and adoptation of https://machinelearningspace.com/object-tracking-python/
dt := 0.1
u := 2.0
stdDevA := 0.25
stdDevM := 1.2
n := 100
iters := int(float64(n) / dt)
track := make([]struct {
t float64
x float64
}, iters)
v := 0.0
for i := 0; i < iters; i++ {
track[i] = struct {
t float64
x float64
}{
t: v,
x: dt * (v*v - v),
}
v += dt
}
kalman := NewKalman1D(dt, u, stdDevA, stdDevM)
measurements := make([]float64, 0, iters)
predictions := make([]float64, 0, iters)
for _, val := range track {
// tm := val.t
x := val.x
// Add some noise to perfect track
noise := rand.Float64()*100 - 50
z := kalman.H.At(0, 0)*x + noise
measurements = append(measurements, z)
// Predict stage
kalman.Predict()
state := kalman.GetVectorState()
predictions = append(predictions, state.At(0, 0))
// Update stage
err := kalman.Update(z)
if err != nil {
t.Error(err)
return
}
}
file, err := os.Create("./data/kalman-1d.csv")
if err != nil {
t.Error(err)
return
}
defer file.Close()
writer := csv.NewWriter(file)
defer writer.Flush()
writer.Comma = ';'
err = writer.Write([]string{"time", "perfect", "measurement", "prediction"})
if err != nil {
t.Error(err)
return
}
for i := 0; i < len(track); i++ {
err = writer.Write([]string{
fmt.Sprintf("%f", track[i].t),
fmt.Sprintf("%f", track[i].x),
fmt.Sprintf("%f", measurements[i]),
fmt.Sprintf("%f", predictions[i]),
})
if err != nil {
t.Error(err)
return
}
}
}
func BenchmarkKalman1D(b *testing.B) {
rand.Seed(1337)
// Just and adoptation of https://machinelearningspace.com/object-tracking-python/
dt := 0.1
u := 2.0
stdDevA := 0.25
stdDevM := 1.2
n := 1000
iters := int(float64(n) / dt)
track := make([]struct {
t float64
x float64
}, iters)
v := 0.0
for i := 0; i < iters; i++ {
track[i] = struct {
t float64
x float64
}{
t: v,
x: dt * (v*v - v),
}
v += dt
}
kalman := NewKalman1D(dt, u, stdDevA, stdDevM)
b.ResetTimer()
for i := 0; i < b.N; i++ {
for _, val := range track {
// tm := val.t
x := val.x
// Add some noise to perfect track
noise := rand.Float64()*100 - 50
z := kalman.H.At(0, 0)*x + noise
// Predict stage
kalman.Predict()
// Update stage
err := kalman.Update(z)
if err != nil {
b.Error(err)
return
}
}
}
}