-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch.py
96 lines (77 loc) · 2.85 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import numpy as np
from multiprocessing import Pool
from multiprocessing import Process
import multiprocessing
verbose = False
def import_list(filename: str):
"""
Imports the file <filename> using numpy.genfromtxt with dtype=str.
:param filename: str
:return imported_list: numpy.ndarray
"""
# Check fileextension from last "." in the filename
for position, character in enumerate(filename[::-1]):
if character == '.':
file_extension = filename[-1-position:]
if verbose:
print('File extension: ', file_extension)
with open(filename) as f:
if file_extension == '.txt': # If it is a .txt
imported_list = np.genfromtxt(f, dtype=str, delimiter=None)
elif file_extension == '.csv': # If it is a .csv
imported_list = np.genfromtxt(f, dtype=str, delimiter=',')
else:
print('What type of list is it? ')
return 1
return imported_list
def split_lists(whole_list, partials=4):
"""
Splits up <whole_list> into <partials> sub-lists.
:param whole_list: numpy.ndarray
:param partials: int
:return lists: list
"""
lists = np.array_split(whole_list, partials)
if verbose:
print(f'Original list split into {len(lists)} separate sub-lists.')
return lists
def searching(lst, search_string):
result = [s for s in lst if search_string in s]
return result
def output(return_lists, search_string):
result = []
for i in range(len(return_lists)):
result += return_lists[i]
if verbose:
print(f'The list contains following entries with {search_string}: {result}')
return result
def run(filename, search_string, partials):
whole_list = import_list(filename)
partial_lists = split_lists(whole_list, partials)
return_lists = pool_handler(partials, partial_lists, search_string)
result = output(return_lists, search_string)
return result
def pool_handler(n_processes=multiprocessing.cpu_count(), partial_lists=None, search_string=None):
"""
Uses multiprocessing.Pool to establish <n_processes> processes to run the local searching() function with
<partial_lists> and <search_string>.
:param n_processes: int
:param partial_lists: list
:param search_string: str
:return result: list
"""
if verbose:
print('Number of processes: ', n_processes)
# search_string_list = [search_string] * len(partial_lists)
list_string_pairs = []
for i in range(len(partial_lists)):
list_string_pairs.append((partial_lists[i], search_string))
p = Pool(n_processes)
result = p.starmap(searching, list_string_pairs)
return result
if __name__ == '__main__':
verbose = True
N_CPUs = multiprocessing.cpu_count()
if verbose:
print("Number of CPU cores: ", N_CPUs)
run('default_list.txt', 'a', N_CPUs)