-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
469 lines (439 loc) · 15.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
import os
import argparse
from copy import deepcopy
import torch
from mecla.dataset import get_dataset, get_dataloader
from mecla.model import get_model, get_ema_ddp_model
from mecla.engine import train_one_epoch_with_valid
from mecla.utils.setup import print_batch_run_settings
from mecla.utils import setup, clear, get_optimizer_and_scheduler, get_criterion_scaler, \
print_meta_data, load_model_list_from_config, get_args_with_setting
def get_args_parser():
parser = argparse.ArgumentParser(
description='pytorch-medical-classification(MECLA)',
add_help=True,
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
# 1.setup
setup = parser.add_argument_group('setup')
setup.add_argument(
'--config', type=str, default=os.path.join('config', 'train.json'),
help='paths for each dataset and pretrained-weight. (json)'
)
setup.add_argument(
'-s', '--settings', type=str, default=['ddsm_v1'], nargs='+',
help='settings used for default value'
)
setup.add_argument(
'--entity', type=str, default='mecla',
help='project space used for wandb logger'
)
setup.add_argument(
'-proj', '--project-name', type=str, default='dft',
help='project name used for wandb logger'
)
setup.add_argument(
'--who', type=str, default='hankyul2',
help='enter your name'
)
setup.add_argument(
'--use-wandb', action='store_true', default=False,
help='track std out and log metric in wandb'
)
setup.add_argument(
'-exp', '--exp-name', type=str, default=None,
help='experiment name for each run'
)
setup.add_argument(
'--resume', action='store_true',
help='if true, resume train from checkpoint_path'
)
setup.add_argument(
'-out', '--output-dir', type=str, default='log',
help='where log output is saved'
)
setup.add_argument(
'--save-weight', action='store_true',
help='if true, save best weight during train'
)
setup.add_argument(
'-p', '--print-freq', type=int, default=50,
help='how often print metric in iter'
)
setup.add_argument(
'--valid-freq', type=int, default=None,
help='if not None, validate model every certain iter'
)
setup.add_argument(
'--seed', type=int, default=42,
help='fix seed'
)
setup.add_argument(
'--use-deterministic', action='store_true',
help='use deterministic algorithm'
)
setup.add_argument(
'--amp', action='store_true', default=False,
help='enable native amp(fp16) training'
)
setup.add_argument(
'--channels-last', action='store_true',
help='change memory format to channels last'
)
setup.add_argument(
'-c', '--cuda', type=str, default='0,1,2,3,4,5,6,7,8',
help='CUDA_VISIBLE_DEVICES options'
)
setup.set_defaults(amp=True, channel_last=True, pin_memory=True, mode='train')
# 2. augmentation & dataset & dataloader
data = parser.add_argument_group('data')
data.add_argument(
'--dataset-type', type=str, default='chexpert',
choices=[
'chexpert', 'nihchest', # chest
'ddsm', 'vindr', # breast
'isic2018', 'isic2019', # skin
'eyepacs', 'messidor2', # eye
'pcam', # lymph
],
help='dataset type'
)
data.add_argument(
'--train-size', type=int, default=(224, 224), nargs='+',
help='train image size'
)
data.add_argument(
'--train-resize-mode', type=str, default='RandomResizedCrop',
help='train image resize mode'
)
data.add_argument(
'--random-crop-pad', type=int, default=0,
help='pad size for ResizeRandomCrop'
)
data.add_argument(
'--random-crop-scale', type=float, default=(0.08, 1.0), nargs='+',
help='train image resized scale for RandomResizedCrop'
)
data.add_argument(
'--random-crop-ratio', type=float, default=(3/4, 4/3), nargs='+',
help='train image resized ratio for RandomResizedCrop'
)
data.add_argument(
'-hf', '--hflip', type=float, default=0.5,
help='random horizontal flip'
)
data.add_argument(
'-vf', '--vflip', type=float, default=None,
help='random vertical flip'
)
data.add_argument(
'--random-affine', action='store_true', default=False,
help='enable random affine with pre-settings'
)
data.add_argument(
'-aa', '--auto-aug', type=str, default=None,
help='enable timm rand augmentation (initial: rand-m9-mstd0.5)'
)
data.add_argument(
'--cutmix', type=float, default=None,
help='cutmix probability'
)
data.add_argument(
'--mixup', type=float, default=None,
help='mix probability'
)
data.add_argument(
'-re', '--remode', type=float, default=None,
help='random erasing probability'
)
data.add_argument(
'--recount', type=float, default=1,
help='random erasing probability'
)
data.add_argument(
'--test-size', type=int, default=(224, 224), nargs='+',
help='test image size'
)
data.add_argument(
'--test-resize-mode', type=str, default='resize_shorter', choices=['resize_shorter', 'resize'],
help='test resize mode'
)
data.add_argument(
'--center-crop-ptr', type=float, default=0.875,
help='test image crop percent'
)
data.add_argument(
'--interpolation', type=str, default='bicubic',
help='image interpolation mode'
)
data.add_argument(
'--mean', type=float, default=(0.485, 0.456, 0.406), nargs='+',
help='image mean'
)
data.add_argument(
'--std', type=float, default=(0.229, 0.224, 0.225), nargs='+',
help='image std'
)
data.add_argument(
'--aug-repeat', type=int, default=None,
help='repeat augmentation'
)
data.add_argument(
'--drop-last', default=False, action='store_true',
help='enable drop_last in train dataloader'
)
data.add_argument(
'-b', '--batch-size', type=int, default=256,
help='batch size'
)
data.add_argument(
'-j', '--num-workers', type=int, default=8,
help='number of workers'
)
data.add_argument(
'--pin-memory', action='store_true', default=False,
help='pin memory in dataloader'
)
data.add_argument(
'--ten-crop', action='store_true',
help='apply 10 x crop'
)
data.add_argument(
'--multi-crop', type=int, default=None,
help='apply multi crop'
)
# 3.model
model = parser.add_argument_group('model')
model.add_argument(
'-m', '--model-names', type=str, default=[], nargs='+',
help='model name'
)
model.add_argument(
'--model-type', type=str, default='timm',
help='timm or torchvision'
)
model.add_argument(
'--in-channels', type=int, default=3,
help='input channel dimension'
)
model.add_argument(
'--drop-path-rate', type=float, default=0.0,
help='stochastic depth rate'
)
model.add_argument(
'--sync-bn', action='store_true', default=False,
help='apply sync batchnorm'
)
model.add_argument(
'--pretrained', action='store_true', default=False,
help='load pretrained weight'
)
model.add_argument(
'--ema', action='store_true', default=False,
help='apply exponential moving average'
)
model.add_argument(
'--ema-decay', type=float, default=0.9999,
help='EMA decay'
)
model.add_argument(
'--ema-update', type=int, default=1,
help='EMA decay'
)
# 4.optimizer & scheduler & criterion
optimizer = parser.add_argument_group('optimizer')
scheduler = parser.add_argument_group('scheduler')
criterion = parser.add_argument_group('criterion')
optimizer.add_argument(
'--lr', type=float, default=1e-3,
help='learning rate(lr)'
)
optimizer.add_argument(
'-e', '--epoch', type=int, default=100,
help='epoch'
)
optimizer.add_argument(
'--optimizer', type=str, default='adamw',
help='optimizer name'
)
optimizer.add_argument(
'--momentum', type=float, default=0.9,
help='optimizer momentum'
)
optimizer.add_argument(
'--weight-decay', type=float, default=1e-3,
help='optimizer weight decay'
)
optimizer.add_argument(
'--nesterov', action='store_true', default=False,
help='use nesterov momentum'
)
optimizer.add_argument(
'--betas', type=float, nargs=2, default=[0.9, 0.999],
help='adam optimizer beta parameter'
)
optimizer.add_argument(
'--eps', type=float, default=1e-6,
help='optimizer eps'
)
scheduler.add_argument(
'--scheduler', type=str, default='cosine',
help='lr scheduler'
)
scheduler.add_argument(
'--step-size', type=int, default=2,
help='lr decay step size'
)
scheduler.add_argument(
'--decay-rate', type=float, default=0.1,
help='lr decay rate'
)
scheduler.add_argument(
'--min-lr', type=float, default=1e-6,
help='lowest lr used for cosine scheduler'
)
scheduler.add_argument(
'--restart-epoch', type=int, default=20,
help='warmup restart epoch period'
)
scheduler.add_argument(
'--milestones', type=int, nargs='+', default=[150, 225],
help='multistep lr decay step'
)
scheduler.add_argument(
'--warmup-scheduler', type=str, default='linear',
help='warmup lr scheduler type'
)
scheduler.add_argument(
'--warmup-lr', type=float, default=1e-4,
help='warmup start lr'
)
scheduler.add_argument(
'--warmup-epoch', type=int, default=5,
help='warmup epoch'
)
scheduler.add_argument(
'--patient-epoch', type=int, default=10,
help='patient epoch for reducing learning rate'
)
criterion.add_argument(
'--criterion', type=str, default='ce', choices=['ce', 'bce', 'mse', 'asym'],
help='loss function'
)
criterion.add_argument(
'--metric-names', type=str, nargs='+',
default=[
'accuracy', 'auroc', 'f1_score', 'specificity',
'recall', 'precision', 'average_precision',
],
help='metric name'
)
criterion.add_argument(
'--save-metric', type=str, default='auroc',
choices=['accuracy', 'auroc', 'f1_score', 'specificity', 'recall', 'precision'],
help='save model weight based on this metric'
)
# criterion.add_argument(
# '--smoothing', type=float, default=0.0,
# help='label smoothing'
# )
criterion.add_argument(
'--grad-norm', type=float, default=None,
help='gradient clipping threshold'
)
criterion.add_argument(
'--grad-accum', type=int, default=1,
help='gradient accumulation'
)
# 5. exp argument
exp = parser.add_argument_group('optimizer')
flag = ['dft_pool', 'els', 'pre_conv', 'wce', 'batch_rebalance', 'pseudo_label', 'distill_distribution', 'kd']
option = [
('drop_rate', float, None, 0.0),
('crop', int, '+', [5]),
('embed', str, None, 'conv'),
('target', str, None, 'mag'),
('weight_pool', str, None, 'linear'),
('mlp_layer', int, None, 0),
('dropout', float, None, 0.0),
('dropblock', float, None, 0.0),
('smoothing', float, None, 0.0),
('sa_layer', int, None, 0),
('freeze_epoch', int, None, 0),
]
ignore = ['drop_rate', 'crop', 'target', 'weight_pool',
'mlp_layer', 'dropout', 'dropblock', 'smoothing', 'sa_layer',
'dft_pool', 'els', 'pre_conv', 'wce', 'freeze_epoch', 'batch_rebalance']
for name in flag:
exp.add_argument(f'--{name.replace("_", "-")}', action='store_true')
for name, data_type, nargs, default in option:
exp.add_argument(f'--{name.replace("_", "-")}', type=data_type, nargs=nargs, default=default)
exp_target_default = [x for x in flag if x not in ignore] + [x[0] for x in option if x[0] not in ignore]
exp.add_argument('--exp-target', type=str, nargs='+', default=exp_target_default)
return parser
def run(args):
# 0. setup distributed
args.exp_name = f"{args.setting}_{args.model_name}"
# args.exp_name += '_'.join(f"{target}_{str(getattr(args, target))}" for target in args.exp_target)
setup(args)
# 1. define transform & load dataset
train_dataset, valid_dataset = get_dataset(args, args.mode)
train_dataloader, valid_dataloader = get_dataloader(train_dataset, valid_dataset, args)
# 2. load model
model = get_model(args)
model, ema_model, ddp_model = get_ema_ddp_model(model, args)
if args.kd:
state_dict = torch.load('log/nihchest_v10_resnet50_up2_attn_hmp_crop23__v7/best_weight.pth', map_location=args.device)
kd_model = deepcopy(model)
kd_model.load_state_dict(state_dict)
else:
kd_model = None
# 3. load optimizer, scheduler, criterion
optimizer, scheduler = get_optimizer_and_scheduler(model, args)
criterion, val_criterion, scaler = get_criterion_scaler(args)
# 4. train model
print_meta_data(model, train_dataset, valid_dataset, args)
args.best = 0
for epoch in range(args.epoch):
if args.distributed or hasattr(train_dataloader.sampler, 'set_epoch'):
train_dataloader.sampler.set_epoch(epoch)
if hasattr(model, 'toggle_grad') and args.freeze_epoch > epoch:
model.toggle_grad(False)
elif hasattr(model, 'toggle_grad'):
model.toggle_grad(True)
val_loss = train_one_epoch_with_valid(
train_dataloader=train_dataloader,
valid_dataloader=valid_dataloader,
model=ddp_model if args.distributed else model,
optimizer=optimizer,
criterion=criterion,
val_criterion=val_criterion,
args=args,
scheduler=scheduler if args.scheduler != 'onpla' else None,
scaler=scaler,
epoch=epoch,
ema_model=ema_model,
kd_model=kd_model,
)
if args.scheduler == 'onpla':
scheduler.step(val_loss)
if __name__ == '__main__':
# 1. parse command
parser = get_args_parser()
args = parser.parse_args()
if len(args.model_names) == 0:
args.model_names = load_model_list_from_config(args, args.mode)
# 2. print batch run info if batch run is enabled
is_single = os.environ.get('LOCAL_RANK', None) is None
is_master = is_single or int(os.environ['LOCAL_RANK']) == 0
is_batch_run = len(args.model_names) > 1 or len(args.settings) > 1
if is_master and is_batch_run:
print_batch_run_settings(args)
# 3. run N(setting) x N(model_names) experiment
prev_args = None
for setting in args.settings:
for model_name in args.model_names:
new_args = get_args_with_setting(parser, args.config, setting, model_name, prev_args, args.mode)
run(new_args)
clear(new_args)
prev_args = new_args