-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLSDChannel.cpp
1135 lines (952 loc) · 38.4 KB
/
LSDChannel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
//
// LSDChannel
// Land Surface Dynamics Channel
//
// An object within the University
// of Edinburgh Land Surface Dynamics group topographic toolbox
// for retaining information of channels
//
// This is a derivative class of LSDIndexChannel.
// LSDIndexChannel alone holds pointers to data in
// LSDFlowInfo and LSDRaster, whereas LSDChannel
// contains actual data about the channel such as
// elevation and drainage area.
//
// These two objects are seperated to save on memory overhead
// during runtime.
//
// Developed by:
// Simon M. Mudd
// Martin D. Hurst
// David T. Milodowski
// Stuart W.D. Grieve
// Declan A. Valters
// Fiona Clubb
//
// Copyright (C) 2013 Simon M. Mudd 2013
//
// Developer can be contacted by simon.m.mudd _at_ ed.ac.uk
//
// Simon Mudd
// University of Edinburgh
// School of GeoSciences
// Drummond Street
// Edinburgh, EH8 9XP
// Scotland
// United Kingdom
//
// This program is free software;
// you can redistribute it and/or modify it under the terms of the
// GNU General Public License as published by the Free Software Foundation;
// either version 2 of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY;
// without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU General Public License for more details.
//
// You should have received a copy of the
// GNU General Public License along with this program;
// if not, write to:
// Free Software Foundation, Inc.,
// 51 Franklin Street, Fifth Floor,
// Boston, MA 02110-1301
// USA
//
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// Source code for the LSDChannel object.
// This obect is linked to a LSDIndexChannel object.
// The LSDIndexChannel object holds the row, column and node
// index for each channel. The LSDChannel object contains
// additional information such as elevation, drainage area
// and chi (the transformed coordiante for integral analysis of
// channel profiles
//-----------------------------------------------------------------
//DOCUMENTATION URL: http://www.geos.ed.ac.uk/~s0675405/LSD_Docs/
//-----------------------------------------------------------------
#include <vector>
#include <fstream>
#include <algorithm>
#include "TNT/tnt.h"
#include "LSDFlowInfo.hpp"
#include "LSDChannel.hpp"
#include "LSDIndexChannel.hpp"
#include "LSDMostLikelyPartitionsFinder.hpp"
using namespace std;
using namespace TNT;
#ifndef LSDChannel_CPP
#define LSDChannel_CPP
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// first create routine
// creates an LSDChannel by copying from an IndexChannel
// IMPORTANT
// The starting node is upstream
// the ending node is downstream
// In this create function the junction indices are left blank (this can
// describe a channel between two arbitraty points
//
// SMM 2012
//
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
void LSDChannel::create_LSDC(LSDIndexChannel& InChann)
{
vector<float> empty_vec;
Elevation = empty_vec;
Chi = empty_vec;
DrainageArea = empty_vec;
StartJunction = InChann.get_StartJunction();
EndJunction = InChann.get_EndJunction();
StartNode = InChann.get_StartNode();
EndNode = InChann.get_EndNode();
NRows = InChann.get_NRows();
NCols = InChann.get_NCols();
XMinimum = InChann.get_XMinimum();
YMinimum = InChann.get_YMinimum();
DataResolution = InChann.get_DataResolution();
NoDataValue = InChann.get_NoDataValue();
GeoReferencingStrings = InChann.get_GeoReferencingStrings();
RowSequence = InChann.get_RowSequence();
ColSequence = InChann.get_ColSequence();
NodeSequence = InChann.get_NodeSequence();
}
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// this calculates all the channel areas, elevations and chi parameters based on
// for a starting node index and ending node index
//
// SMM 2012
//
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
void LSDChannel::create_LSDC(int SJN, int EJN, float downslope_chi,
float m_over_n, float A_0, LSDFlowInfo& FlowInfo,
LSDRaster& Elevation_Raster)
{
NRows = FlowInfo.get_NRows();
NCols = FlowInfo.get_NCols();
XMinimum = FlowInfo.get_XMinimum();
YMinimum = FlowInfo.get_YMinimum();
DataResolution = FlowInfo.get_DataResolution();
NoDataValue = FlowInfo.get_NoDataValue();
GeoReferencingStrings = FlowInfo.get_GeoReferencingStrings();
float root2 = 1.41421356;
float diag_length = root2*DataResolution;
float dx;
float pixel_area = DataResolution*DataResolution;
StartJunction = -1;
EndJunction = -1;
StartNode = SJN;
EndNode = EJN;
vector<int> RowI;
vector<int> ColI;
vector<int> NdI;
int curr_node = StartNode;
// push back the data vecotors with the starting node
int curr_row, curr_col;
FlowInfo.retrieve_current_row_and_col(curr_node,curr_row,curr_col);
NdI.push_back(StartNode);
RowI.push_back(curr_row);
ColI.push_back(curr_col);
int receive_node = -99;
int receive_row, receive_col;
// loop through receivers until you get to EndNode
while(curr_node != EndNode)
{
FlowInfo.retrieve_receiver_information(curr_node, receive_node, receive_row,
receive_col);
NdI.push_back(receive_node);
RowI.push_back(receive_row);
ColI.push_back(receive_col);
if (receive_node == curr_node)
{
EndNode = curr_node;
cout << "Warning, the channel has come to a baselevel node before it has"
<< endl << "reached the end node" << endl;
}
else
{
curr_node = receive_node;
}
}
RowSequence = RowI;
ColSequence = ColI;
NodeSequence = NdI;
// get the number of nodes in the channel
int n_nodes_in_channel = int(NodeSequence.size());
// the bottom node is at chi of downslope_chi
// initiate the chi vector
vector<float> empty_vec;
vector<float> chi_temp(n_nodes_in_channel,downslope_chi);
vector<float> elev_temp(n_nodes_in_channel,float(NoDataValue));
vector<float> area_temp(n_nodes_in_channel,float(NoDataValue));
// get the first node
float curr_area;
curr_node = NodeSequence[n_nodes_in_channel-1];
curr_row = RowI[n_nodes_in_channel-1];
curr_col = ColI[n_nodes_in_channel-1];
curr_area = float(FlowInfo.retrieve_contributing_pixels_of_node(curr_node))*pixel_area;
area_temp[n_nodes_in_channel-1] = curr_area;
elev_temp[n_nodes_in_channel-1] = Elevation_Raster.get_data_element(curr_row,curr_col);
// now loop up through the channel, adding chi values
// note, the channel index are arranges with upstream element first, so you need to go through the channel
// in reverse order
for (int ChIndex = n_nodes_in_channel-2; ChIndex>=0; ChIndex--)
{
//cout << "ChIndex is: " << ChIndex << endl;
curr_node = NodeSequence[ChIndex];
FlowInfo.retrieve_current_row_and_col(curr_node,curr_row,
curr_col);
if (FlowInfo.retrieve_flow_length_code_of_node(curr_node) == 2)
{
dx = diag_length;
}
else
{
dx = DataResolution;
}
//cout << "dx is: " << dx << endl;
curr_area = float(FlowInfo.retrieve_contributing_pixels_of_node(curr_node))*pixel_area;
area_temp[ChIndex] = curr_area;
elev_temp[ChIndex] = Elevation_Raster.get_data_element(curr_row,curr_col);
chi_temp[ChIndex] = dx*(pow( (A_0/curr_area ),
m_over_n))
+ chi_temp[ChIndex+1];
//cout << "link 0, node " << curr_node << " and chi: " << chi_temp[ChIndex]
// << " and chi_temp+1: " << chi_temp[ChIndex+1] << endl;
}
Chi = chi_temp;
Elevation = elev_temp;
DrainageArea = area_temp;
}
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// this calculates all the channel areas, elevations and chi parameters based on
// for a starting node index and ending node index
// Similar to above but you assign the drainage area so you can use dinfinity
// or some other method if you want
//
// SMM 2014
//
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
void LSDChannel::create_LSDC(int SJN, int EJN, float downslope_chi,
float m_over_n, float A_0, LSDFlowInfo& FlowInfo,
LSDRaster& Elevation_Raster, LSDRaster& Drainage_Area_Raster)
{
NRows = FlowInfo.get_NRows();
NCols = FlowInfo.get_NCols();
XMinimum = FlowInfo.get_XMinimum();
YMinimum = FlowInfo.get_YMinimum();
DataResolution = FlowInfo.get_DataResolution();
NoDataValue = FlowInfo.get_NoDataValue();
GeoReferencingStrings = FlowInfo.get_GeoReferencingStrings();
float root2 = 1.41421356;
float diag_length = root2*DataResolution;
float dx;
//float pixel_area = DataResolution*DataResolution;
StartJunction = -1;
EndJunction = -1;
StartNode = SJN;
EndNode = EJN;
vector<int> RowI;
vector<int> ColI;
vector<int> NdI;
int curr_node = StartNode;
// push back the data vecotors with the starting node
int curr_row, curr_col;
FlowInfo.retrieve_current_row_and_col(curr_node,curr_row,curr_col);
NdI.push_back(StartNode);
RowI.push_back(curr_row);
ColI.push_back(curr_col);
int receive_node = -99;
int receive_row, receive_col;
// loop through receivers until you get to EndNode
while(curr_node != EndNode)
{
FlowInfo.retrieve_receiver_information(curr_node, receive_node, receive_row,
receive_col);
NdI.push_back(receive_node);
RowI.push_back(receive_row);
ColI.push_back(receive_col);
if (receive_node == curr_node)
{
EndNode = curr_node;
cout << "Warning, the channel has come to a baselevel node before it has"
<< endl << "reached the end node" << endl;
}
else
{
curr_node = receive_node;
}
}
RowSequence = RowI;
ColSequence = ColI;
NodeSequence = NdI;
// get the number of nodes in the channel
int n_nodes_in_channel = int(NodeSequence.size());
// the bottom node is at chi of downslope_chi
// initiate the chi vector
vector<float> empty_vec;
vector<float> chi_temp(n_nodes_in_channel,downslope_chi);
vector<float> elev_temp(n_nodes_in_channel,float(NoDataValue));
vector<float> area_temp(n_nodes_in_channel,float(NoDataValue));
// get the first node
float curr_area;
curr_node = NodeSequence[n_nodes_in_channel-1];
curr_row = RowI[n_nodes_in_channel-1];
curr_col = ColI[n_nodes_in_channel-1];
curr_area = Drainage_Area_Raster.get_data_element(curr_row,curr_col);
area_temp[n_nodes_in_channel-1] = curr_area;
elev_temp[n_nodes_in_channel-1] = Elevation_Raster.get_data_element(curr_row,curr_col);
// now loop up through the channel, adding chi values
// note, the channel index are arranges with upstream element first, so you need to go through the channel
// in reverse order
for (int ChIndex = n_nodes_in_channel-2; ChIndex>=0; ChIndex--)
{
//cout << "ChIndex is: " << ChIndex << endl;
curr_node = NodeSequence[ChIndex];
FlowInfo.retrieve_current_row_and_col(curr_node,curr_row,
curr_col);
if (FlowInfo.retrieve_flow_length_code_of_node(curr_node) == 2)
{
dx = diag_length;
}
else
{
dx = DataResolution;
}
//cout << "dx is: " << dx << endl;
curr_area = Drainage_Area_Raster.get_data_element(curr_row,curr_col);
area_temp[ChIndex] = curr_area;
elev_temp[ChIndex] = Elevation_Raster.get_data_element(curr_row,curr_col);
chi_temp[ChIndex] = dx*(pow( (A_0/curr_area ),
m_over_n))
+ chi_temp[ChIndex+1];
//cout << "link 0, node " << curr_node << " and chi: " << chi_temp[ChIndex]
// << " and chi_temp+1: " << chi_temp[ChIndex+1] << endl;
}
Chi = chi_temp;
Elevation = elev_temp;
DrainageArea = area_temp;
}
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// this calculates all the channel areas, elevations and chi parameters based on
// for a given LSDChannelIndex
//
// SMM 2012
//
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
void LSDChannel::create_LSDC(float downslope_chi,
float m_over_n, float A_0, LSDIndexChannel& InChann, LSDFlowInfo& FlowInfo,
LSDRaster& Elevation_Raster)
{
NRows = FlowInfo.get_NRows();
NCols = FlowInfo.get_NCols();
XMinimum = FlowInfo.get_XMinimum();
YMinimum = FlowInfo.get_YMinimum();
DataResolution = FlowInfo.get_DataResolution();
NoDataValue = FlowInfo.get_NoDataValue();
GeoReferencingStrings = FlowInfo.get_GeoReferencingStrings();
float root2 = 1.41421356;
float diag_length = root2*DataResolution;
float dx;
float pixel_area = DataResolution*DataResolution;
//cout << "data res: " << DataResolution << endl;
StartJunction = InChann.get_StartJunction();
EndJunction = InChann.get_EndJunction();
StartNode = InChann.get_StartNode();
EndNode = InChann.get_EndNode();
RowSequence = InChann.get_RowSequence();
ColSequence = InChann.get_ColSequence();
NodeSequence = InChann.get_NodeSequence();
int curr_node = StartNode;
// push back the data vectors with the starting node
int curr_row, curr_col;
// get the number of nodes in the channel
int n_nodes_in_channel = int(NodeSequence.size());
// the bottom node is at chi of downslope_chi
// initiate the chi vector
vector<float> empty_vec;
vector<float> chi_temp(n_nodes_in_channel,downslope_chi);
vector<float> elev_temp(n_nodes_in_channel,float(NoDataValue));
vector<float> area_temp(n_nodes_in_channel,float(NoDataValue));
// get the first node
float curr_area;
//cout << "downslope_chi: " << downslope_chi << endl;
curr_node = NodeSequence[n_nodes_in_channel-1];
FlowInfo.retrieve_current_row_and_col(curr_node,curr_row,
curr_col);
curr_area = float(FlowInfo.retrieve_contributing_pixels_of_node(curr_node))*pixel_area;
area_temp[n_nodes_in_channel-1] = curr_area;
elev_temp[n_nodes_in_channel-1] = Elevation_Raster.get_data_element(curr_row,curr_col);
// now loop up through the channel, adding chi values
// note, the channel index are arranges with upstream element first, so you need to go through the channel
// in reverse order
for (int ChIndex = n_nodes_in_channel-2; ChIndex>=0; ChIndex--)
{
curr_node = NodeSequence[ChIndex];
FlowInfo.retrieve_current_row_and_col(curr_node,curr_row,
curr_col);
//cout << "ChIndex is: " << ChIndex << " curr_node: " << curr_node << " row: "
// << curr_row << " curr_col: " << curr_col << endl;
if (FlowInfo.retrieve_flow_length_code_of_node(curr_node) == 2)
{
dx = diag_length;
}
else
{
dx = DataResolution;
}
//cout << "dx is: " << dx << endl;
curr_area = float(FlowInfo.retrieve_contributing_pixels_of_node(curr_node))*pixel_area;
area_temp[ChIndex] = curr_area;
elev_temp[ChIndex] = Elevation_Raster.get_data_element(curr_row,curr_col);
chi_temp[ChIndex] = dx*(pow( (A_0/curr_area ),
m_over_n))
+ chi_temp[ChIndex+1];
//cout << "node " << curr_node << " and chi: " << chi_temp[ChIndex]
// << " and chi_temp+1: " << chi_temp[ChIndex+1] << endl;
}
Chi = chi_temp;
Elevation = elev_temp;
DrainageArea = area_temp;
}
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// creates an index channel with just the node index of the starting and ending nodes
// IMPORTANT
// The starting node is upstream
// the ending node is downstream
// In this create function the junction indices are left blank (this can
// describe a channel between two arbitraty points
//
// SMM 2012
//
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
void LSDChannel::create_LSDC(int SJN, int EJN, LSDFlowInfo& FlowInfo)
{
vector<float> empty_vec;
Elevation = empty_vec;
Chi = empty_vec;
DrainageArea = empty_vec;
NRows = FlowInfo.get_NRows();
NCols = FlowInfo.get_NCols();
XMinimum = FlowInfo.get_XMinimum();
YMinimum = FlowInfo.get_YMinimum();
DataResolution = FlowInfo.get_DataResolution();
NoDataValue = FlowInfo.get_NoDataValue();
GeoReferencingStrings = FlowInfo.get_GeoReferencingStrings();
StartJunction = -1;
EndJunction = -1;
StartNode = SJN;
EndNode = EJN;
vector<int> RowI;
vector<int> ColI;
vector<int> NdI;
int curr_node = StartNode;
// push back the data vecotors with the starting node
int curr_row, curr_col;
FlowInfo.retrieve_current_row_and_col(curr_node,curr_row,curr_col);
NdI.push_back(StartNode);
RowI.push_back(curr_row);
ColI.push_back(curr_col);
int receive_node = -99;
int receive_row, receive_col;
// loop through receivers until you get to EndNode
while(curr_node != EndNode)
{
FlowInfo.retrieve_receiver_information(curr_node, receive_node, receive_row,
receive_col);
NdI.push_back(receive_node);
RowI.push_back(receive_row);
ColI.push_back(receive_col);
if (receive_node == curr_node)
{
EndNode = curr_node;
cout << "Warning, the channel has come to a baselevel node before it has"
<< endl << "reached the end node" << endl;
}
else
{
curr_node = receive_node;
}
}
RowSequence = RowI;
ColSequence = ColI;
NodeSequence = NdI;
}
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// third create routine
// creates an index channel with just the node index of the starting and ending nodes
// also includes junction information
// IMPORTANT
// The starting node is upstream
// the ending node is downstream
// In this create function the junction indices are left blank (this can
// describe a channel between two arbitraty points
//
// SMM 2012
//
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
void LSDChannel::create_LSDC(int SJ, int SJN, int EJ, int EJN, LSDFlowInfo& FlowInfo)
{
vector<float> empty_vec;
Elevation = empty_vec;
Chi = empty_vec;
DrainageArea = empty_vec;
NRows = FlowInfo.get_NRows();
NCols = FlowInfo.get_NCols();
XMinimum = FlowInfo.get_XMinimum();
YMinimum = FlowInfo.get_YMinimum();
DataResolution = FlowInfo.get_DataResolution();
NoDataValue = FlowInfo.get_NoDataValue();
GeoReferencingStrings = FlowInfo.get_GeoReferencingStrings();
StartJunction = SJ;
EndJunction = EJ;
StartNode = SJN;
EndNode = EJN;
vector<int> RowI;
vector<int> ColI;
vector<int> NdI;
int curr_node = StartNode;
// push back the data vecotors with the starting node
int curr_row, curr_col;
FlowInfo.retrieve_current_row_and_col(curr_node,curr_row,curr_col);
NdI.push_back(StartNode);
RowI.push_back(curr_row);
ColI.push_back(curr_col);
int receive_node = -99;
int receive_row, receive_col;
// loop through receivers until you get to EndNode
while(curr_node != EndNode)
{
FlowInfo.retrieve_receiver_information(curr_node, receive_node, receive_row,
receive_col);
//cout << "receive_node: " << receive_node << " and Endnode: " << EndNode << endl;
NdI.push_back(receive_node);
RowI.push_back(receive_row);
ColI.push_back(receive_col);
if (receive_node == curr_node)
{
EndNode = curr_node;
cout << "Warning, the channel has come to a baselevel node before it has"
<< endl << "reached the end node" << endl;
}
else
{
curr_node = receive_node;
}
}
RowSequence = RowI;
ColSequence = ColI;
NodeSequence = NdI;
}
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// this function prints the LSDChannel to an LSDIndexRaster
//
// FJC 21/08/15
//
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
LSDIndexRaster LSDChannel::print_channel_to_IndexRaster(LSDFlowInfo& FlowInfo)
{
NRows = FlowInfo.get_NRows();
NCols = FlowInfo.get_NCols();
XMinimum = FlowInfo.get_XMinimum();
YMinimum = FlowInfo.get_YMinimum();
DataResolution = FlowInfo.get_DataResolution();
NoDataValue = FlowInfo.get_NoDataValue();
GeoReferencingStrings = FlowInfo.get_GeoReferencingStrings();
Array2D<int> nodes_in_channel(NRows,NCols,NoDataValue);
for (int row = 0; row<NRows; row++)
{
for (int col = 0; col<NCols; col++)
{
for (int i = 0; i < RowSequence.size(); i++)
{
if (RowSequence[i] == row && ColSequence[i] == col)
{
nodes_in_channel[row][col] = NodeSequence[i];
}
}
}
}
LSDIndexRaster Channel(NRows,NCols, XMinimum, YMinimum, DataResolution, NoDataValue, nodes_in_channel, GeoReferencingStrings);
return Channel;
}
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// this function uses a flow info object to calculate the chi values in the channel
//
// SMM 2012
//
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
void LSDChannel::calculate_chi(float downslope_chi, float m_over_n, float A_0, LSDFlowInfo& FlowInfo )
{
float root2 = 1.41421356;
float diag_length = root2*DataResolution;
float dx;
float pixel_area = DataResolution*DataResolution;
int curr_node;
// get the number of nodes in the channel
int n_nodes_in_channel = int(NodeSequence.size());
// the bottom node is at chi of downslope_chi
// initiate the chi vector
vector<float> empty_vec;
vector<float> chi_temp(n_nodes_in_channel,downslope_chi);
// now loop up through the channel, adding chi values
// note, the channel index are arranges with upstream element first, so you need to go through the channel
// in reverse order
for (int ChIndex = n_nodes_in_channel-2; ChIndex>=0; ChIndex--)
{
//cout << "ChIndex is: " << ChIndex << endl;
curr_node = NodeSequence[ChIndex];
if (FlowInfo.retrieve_flow_length_code_of_node(curr_node) == 2)
{
dx = diag_length;
}
else
{
dx = DataResolution;
}
//cout << "dx is: " << dx << endl;
chi_temp[ChIndex] = dx*(pow( (A_0/ (float(
FlowInfo.retrieve_contributing_pixels_of_node(curr_node))*pixel_area) ),
m_over_n))
+ chi_temp[ChIndex+1];
//cout << "link 0, node " << curr_node << " and chi: " << chi_temp[ChIndex]
// << " and chi_temp+1: " << chi_temp[ChIndex+1] << endl;
}
Chi = chi_temp;
}
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// Calculates chi but with a flow accumulation raster
//
// SMM 2014
//
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
void LSDChannel::calculate_chi(float downslope_chi, float m_over_n, float A_0,
LSDRaster& FlowAccum, LSDFlowInfo& FlowInfo )
{
float root2 = 1.41421356;
float diag_length = root2*DataResolution;
float dx;
//float pixel_area = DataResolution*DataResolution;
int curr_node;
int this_row,this_col;
// get the number of nodes in the channel
int n_nodes_in_channel = int(NodeSequence.size());
// the bottom node is at chi of downslope_chi
// initiate the chi vector
vector<float> empty_vec;
vector<float> chi_temp(n_nodes_in_channel,downslope_chi);
// now loop up through the channel, adding chi values
// note, the channel index are arranges with upstream element first, so you need to go through the channel
// in reverse order
for (int ChIndex = n_nodes_in_channel-2; ChIndex>=0; ChIndex--)
{
//cout << "ChIndex is: " << ChIndex << endl;
curr_node = NodeSequence[ChIndex];
if (FlowInfo.retrieve_flow_length_code_of_node(curr_node) == 2)
{
dx = diag_length;
}
else
{
dx = DataResolution;
}
//cout << "dx is: " << dx << endl;
// get the row and columm
FlowInfo.retrieve_current_row_and_col(curr_node, this_row, this_col);
chi_temp[ChIndex] = dx*(pow( (A_0/FlowAccum.get_data_element(this_row,this_col) ),
m_over_n))
+ chi_temp[ChIndex+1];
//cout << "link 0, node " << curr_node << " and chi: " << chi_temp[ChIndex]
// << " and chi_temp+1: " << chi_temp[ChIndex+1] << endl;
}
Chi = chi_temp;
}
// this function gets the most likely channel segments
//
// SMM 2013
//
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
void LSDChannel::find_most_likeley_segments(int minimum_segment_length, float sigma, int target_nodes,
vector<float>& b_vec, vector<float>& m_vec,
vector<float>& r2_vec,vector<float>& DW_vec,
vector<float>& thinned_chi, vector<float>& thinned_elev,
vector<float>& fitted_elev, vector<int>& node_ref_thinned,
vector<int>& these_segment_lengths,
float& this_MLE, int& this_n_segments, int& n_data_nodes,
float& this_AIC, float& this_AICc )
{
// first create a segment finder object
//cout << "making MLEfinder object, " << endl;
vector<int> empty_vec;
node_ref_thinned = empty_vec;
vector<float> reverse_Chi = Chi;
reverse(reverse_Chi.begin(), reverse_Chi.end());
vector<float> reverse_Elevation = Elevation;
reverse(reverse_Elevation.begin(), reverse_Elevation.end());
vector<int> this_node_sequence = NodeSequence;
reverse(this_node_sequence.begin(), this_node_sequence.end());
LSDMostLikelyPartitionsFinder channel_MLE_finder(minimum_segment_length, reverse_Chi, reverse_Elevation);
//cout << "got MLE finder object" << endl;
//cout << "rc size: " << reverse_Chi.size() << " and r_elev size: " << reverse_Elevation.size() << endl;
//cout << "ns size: " << NodeSequence.size() << " and rns sz: " << this_node_sequence.size() << endl;
// this needs to be thinned. Get the maximum chi value and then determine dchi
int n_nodes = reverse_Chi.size();
float max_chi = reverse_Chi[n_nodes-1];
float min_chi = reverse_Chi[0];
//cout << "LSDChannel::find_most_likeley_segments, max_chi: " << max_chi << " and min: " << min_chi << endl;
//cout << "n_nodes is: " << channel_MLE_finder.get_n_nodes() << endl;
float dchi = (max_chi-min_chi)/float(target_nodes);
cout << "LSDChannel 533, dchi is: " << dchi << endl;
// now thin the data, preserving the data (not interpoalting)
vector<int> node_reference;
channel_MLE_finder.thin_data_target_dx_preserve_data(dchi, node_reference);
n_nodes = node_reference.size();
//cout << "number of nodes in node reference: " << n_nodes << endl;
for (int i = 0; i< n_nodes; i++)
{
//cout << " the node reference is: " << node_reference[i] << endl;
//cout << " node sequence: " << this_node_sequence[ node_reference[i]] << endl;
node_ref_thinned.push_back(this_node_sequence[ node_reference[i] ]);
}
//cout << "thinned, n_nodes is: " << channel_MLE_finder.get_n_nodes() << endl;
// now create a single sigma value vector
vector<float> sigma_values;
sigma_values.push_back(sigma);
// compute the best fit AIC
channel_MLE_finder.best_fit_driver_AIC_for_linear_segments(sigma_values);
channel_MLE_finder.get_data_from_best_fit_lines(0, sigma_values, b_vec, m_vec,
r2_vec, DW_vec, fitted_elev,these_segment_lengths,
this_MLE, this_n_segments, n_data_nodes, this_AIC, this_AICc);
thinned_chi = channel_MLE_finder.get_x_data();
thinned_elev = channel_MLE_finder.get_y_data();
}
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// this function finds the best fit m/n ratio
//
// SMM 2013
//
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
void LSDChannel::find_best_fit_m_over_n_with_segments(int n_movern, float d_movern,float start_movern,
float downslope_chi, float A_0, LSDFlowInfo& FlowInfo,
int minimum_segment_length, float sigma, float target_nodes )
{
// now get the details of the best fit
vector<float> m_vec;
vector<float> b_vec;
vector<float> r2_vec;
vector<float> DW_vec;
vector<float> fitted_y;
int n_data_nodes;
int this_n_segments;
float this_MLE, this_AIC, this_AICc;
vector<int> these_segment_lengths;
vector<float> chi_thinned;
vector<float> elev_thinned;
vector<float> elev_fitted;
vector<int> node_ref_thinned;
// these are used for storing the best fits in the list of m_over_n
vector<float> best_m_vec;
vector<float> best_b_vec;
vector<float> best_r2_vec;
vector<float> best_DW_vec;
vector<float> best_fitted_y;
int best_n_data_nodes;
int best_this_n_segments;
float best_this_MLE, best_this_AIC, best_this_AICc;
vector<int> best_these_segment_lengths;
vector<float> best_chi_thinned;
vector<float> best_elev_thinned;
vector<float> best_elev_fitted;
vector<int> best_node_ref_thinned;
float min_AICc = 9999;
float best_movern = start_movern;
float m_over_n;
for(int i = 0; i<n_movern; i++)
{
m_over_n = float(i)*d_movern+start_movern;
// recalculate chi
calculate_chi(downslope_chi, m_over_n,A_0, FlowInfo );
find_most_likeley_segments(minimum_segment_length, sigma, target_nodes,
b_vec, m_vec,r2_vec,DW_vec,
chi_thinned, elev_thinned,elev_fitted, node_ref_thinned,
these_segment_lengths, this_MLE, this_n_segments, n_data_nodes,
this_AIC, this_AICc);
if (this_AICc < min_AICc)
{
best_b_vec =b_vec;
best_m_vec = m_vec;
best_r2_vec = r2_vec;
best_DW_vec = DW_vec;
best_chi_thinned = chi_thinned;
best_elev_thinned = elev_thinned;
best_elev_fitted = elev_fitted;
best_node_ref_thinned = node_ref_thinned;
best_these_segment_lengths = these_segment_lengths;
best_this_MLE = this_MLE;
best_this_n_segments = this_n_segments;
best_n_data_nodes = n_data_nodes;
best_this_AIC = this_AIC;
best_this_AICc = this_AICc;
min_AICc = this_AICc;
best_movern = m_over_n;
//cout << "best AICc: " << this_AICc << " and m_over_n: " << best_movern << endl;
}
}
// now print the channel profile
//cout << endl << endl << endl << "best fit m_over_n: " << best_movern << " with AICc: " << min_AICc << endl;
//int n_nodes = chi_thinned.size();
//for(int i = 0; i<n_nodes; i++)
// {
// cout << chi_thinned[i] << " " << elev_thinned[i] << " " << elev_fitted[i] << endl;
// }
}
///=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
/// Calculate channel head locations using chi segment fitting.
///
/// Fitting segments to the chi-elevation data of the main stem. We assume that the profile
/// is made up of 2 segments in chi-space: a linear channel segment and a non-linear hillslope
/// segment. We loop through the possible combinations of segment lengths, performing a linear
/// regression to calculate the r^2 and DW of each segment length. We then calculate a test
/// value: r^2 of the channel segment - ((DW of the hillslope segment - 2)/2). This value
/// will vary between 0 and 1. The maximum test_value will give the best fit channel and
/// hillslope segments. Need to get the best fit m_over_n value first.
/// Parameters: min_seg_length_for_channel_heads (length used for fitting segments to the chi-
/// elevation profile, a value of 10 is suggested), A_0, m over n, FlowInfo.
/// Return value: integer with the node index of the channel head location.
/// FC 25/09/2013
//=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
int LSDChannel::calculate_channel_heads(int min_seg_length_for_channel_heads, float A_0,
float m_over_n, LSDFlowInfo& FlowInfo)
{
float downslope_chi = 0;
calculate_chi(downslope_chi, m_over_n, A_0, FlowInfo);
vector<float> channel_chi;
vector<float> hillslope_chi;
vector<float> channel_elev;
vector<float> hillslope_elev;
int end_node = Chi.size();
float test_value;
float max_test_value = 0;
int best_chan_seg = 0;
int best_hill_seg = 0;
int start_node = 0;
int node_index = 0;
float chan_gradient = 0;
float hill_gradient = 0;
float chan_intercept = 0;
float hill_intercept = 0;
float chi_intersection = 0;
float elev_intersection = 0;
vector<float>::iterator vec_iter_start;
vector<float>::iterator vec_iter_end;