-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmspm_run_results.m
189 lines (166 loc) · 6.65 KB
/
mspm_run_results.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
function mspm_run_results(job)
%%%MSPM%%%
MSPM = job.spmmat;
load(MSPM{1}) % load structures (named SPM and L) that contains vQ, SSR, Vbeta, swd, K and X.
cd(SPM.swd)
% % contrast c (on X) and contrast L (on Y)
% [j,xCon] = spm_conman(SPM.yCon,'T&F',Inf,' Select contrasts L',' for inference',1);
% L = xCon(j).c;
% SPM.yCon.xCon = xCon;
% clear xCon
%
% [i,xCon] = spm_conman(SPM,'T&F',Inf,' Select contrasts c',' for inference',1); % spm_conman crée une SPM.mat dans "current folder" (pas dans le workspace)
% c = xCon(i).c;
% SPM.xCon = xCon;
addpath(fullfile(spm('dir'),'toolbox','MSPM_toolbox'))
[a b SPM]=mspm_go; % a=indice for contrast L, b=indice for contrast c
%delete SPM.mat
if ~isfield(SPM.try{a,b}, 'Vspm') || isempty(SPM.try{a,b}.Vspm)==1
[VW, VF, df1, df2, aa] = mspm_FW(SPM.vQ, SPM.SSR, SPM.Vbeta, SPM.swd, SPM.xCon(b).c, SPM.K, SPM.xX.X, SPM.yCon.xCon(a).c,a,b); % function that compute the Wilks and f-values images.
% SPM.xCon(b).Vspm = VF;
% SPM.xCon(b).Vcon = VW;
% SPM.McF{a,b}=VF;
% SPM.McW{a,b}=VW;
SPM.try{a,b} = SPM.xCon(b);
SPM.try{a,b}.Vspm = VF;
SPM.try{a,b}.Vcon = VW;
SPM.try{a,b}.eidf = unique(df1);
SPM.try{a,b}.STAT = 'F';
SPM.ttry{a,b} = aa;
save('MSPM.mat','SPM')
SPM.xCon = [];
SPM.xCon = SPM.try{a,b};
SPM.xX.erdf = unique(df2);
else
SPM.xCon = [];
SPM.xCon = SPM.try{a,b};
% else
% VF=SPM.McF{a,b};
% VW=SPM.McW(a,b);
end
r=fullfile(SPM.ttry{a,b},'SPM.mat');
save((r), 'SPM')
end
%%
function [VW, VF, df1, df2, aa] = mspm_FW(vQ, SSR, Vbeta, swd,c, K,X,L,cL,cc)
[M,XYZ] = spm_read_vols(vQ); % create the matrices of statistical values from the vQ volume structure
M = logical(M(:)); % cast into logical for memory efficiency
XYZ(4,:) = 1; % add 4th "dimension"
XYZ = vQ.mat\XYZ(:,M); %inv(vQ.mat)*XYZ(:,M); % convert from mm to voxel
iM = find(M);
chk = 40000;
chk = 1:chk:size(XYZ,2)+chk;
W1 = nan(vQ.dim);
Wall = nan(vQ.dim);
F1 = nan(vQ.dim);
Fall = nan(vQ.dim);
V = nan([rank(L) vQ.dim]);
P = size(X,2);
% if we have the linear contrast ABM - C = 0, with A (X*c) the qxk response
% transformation matrix on X, and M (L) pxl hypothesis matrix
n = size(X,1);
q = rank(X*c);
l = rank(L);
u = (l*q-2)/4;
r = n - rank(X) - (l-q+1)/2;
if l^2+q^2-5 > 0
t = (l^2*q^2-4)/(l^2+q^2-5);
else
t = 1;
end
df2 = r*t-2*u;
df1 = l*q;
XX = mspm_X1(X, c); % XX is the design matrix for my formula of SST (not Ferath's formula,slow), XX is used in function SSTWi
% mspm_X1 is removing the effect of no
% interest
spm_progress_bar('Init',length(chk)-1,'vox','CVA');
for i = 1:length(chk)-1
blk = chk(i):min(chk(i+1)-1,size(XYZ,2));
w1 = zeros(1,length(blk));
wall = zeros(1,length(blk));
f1 = zeros(1,length(blk));
fall = zeros(1,length(blk));
v = zeros(rank(L), length(blk));
ssr = reshape(spm_get_data(SSR,XYZ(1:3,blk)),K,K,length(blk));
B = reshape(spm_get_data(Vbeta,XYZ(1:3,blk)),P,K,length(blk)); % get betas for each block (read image)
for j = 1:length(blk)
[w1(j), wall(j), v(:,j)] = mspm_Wi(ssr(:,:,j),q,B(:,:,j),XX,L); % compute the Wilks (through SST (SST not save))
Ytmp = w1(j)^(1/t);
f1(j) = ((1-Ytmp)/Ytmp)*(df2/df1);
Ytmp = wall(j)^(1/t);
fall(j) = ((1-Ytmp)/Ytmp)*(df2/df1);
end
W1(iM(blk)) = w1;
Wall(iM(blk)) = wall;
F1(iM(blk)) = f1;
Fall(iM(blk)) = fall;
V(:,iM(blk)) = v;
spm_progress_bar('Set',i);
end
% create results folder
aa = fullfile(swd, ['L_' num2str(cL,'%02d') '_c' num2str(cc,'%02d')]);
mkdir(aa)
% write image of Wilks first canonical variates
VW = vQ;
VW.fname = fullfile(aa,['spm_W_first_L' num2str(cL,'%02d') '_c' num2str(cc,'%02d') '.nii']);
VW.dt = [64 0];
VW.pinfo = [1 0 0]';
VW = spm_create_vol(VW);
VW = spm_write_vol(VW,W1);
% write image of Wilks all canonical variates
VW = vQ;
VW.fname = fullfile(aa,['spm_W_all_L' num2str(cL,'%02d') '_c' num2str(cc,'%02d') '.nii']);
VW.dt = [64 0];
VW.pinfo = [1 0 0]';
VW = spm_create_vol(VW);
VW = spm_write_vol(VW,Wall);
% write image of F-values first canonical variates
VF = vQ;
VF.fname = fullfile(aa,['spm_F_first_L' num2str(cL,'%02d') '_c' num2str(cc,'%02d') '.nii']);
VF.dt = [64 0];
VF.pinfo = [1 0 0]';
VF = spm_create_vol(VF);
VF = spm_write_vol(VF,F1);
% write image of F-values all canonical variates
VF = vQ;
VF.fname = fullfile(aa,['spm_F_all_L' num2str(cL,'%02d') '_c' num2str(cc,'%02d') '.nii']);
VF.dt = [64 0];
VF.pinfo = [1 0 0]';
VF = spm_create_vol(VF);
VF = spm_write_vol(VF,Fall);
% write image of first canonical vectors
for i = 1:rank(L)
VV = vQ;
VV.fname = fullfile(aa,['spm_CVL_depVar_' num2str(i) '_L' num2str(cL,'%02d') '_c' num2str(cc,'%02d') '.nii']);
VV.dt = [64 0];
VV.pinfo = [1 0 0]';
VV = spm_create_vol(VV);
VV = spm_write_vol(VV,squeeze(V(i,:,:,:)));
end
end
function XX = mspm_X1(X, c)
X0 = X - X*c*pinv(c);
X0 = spm_svd(X0);
XX = X - X0*(X0'*X);
end
function [W1, Wi_all, v] = mspm_Wi(SSR,q,beta,X,L)
sst = (beta*L)'*(X'*X)*(beta*L); % regression sum of square (Beta*'X*'X*Beta)
[v,d] = eig(pinv(L'*SSR*L)*sst); % "correction" of the SSR by L ?? \ faster than pinv()
% multiplication by L'*L adjust for the
% size of the matrix depending on the
% contrast
[~,r] = sort(-real(diag(d)));
r = r(1:q);
d = real(d(r,r));
W = 1./(diag(d)+1);
W1 = W(1);
Wi_all = prod(W);
v = v(:,1);
if sign(v(1,1)) == -1
v = v.*sign(v(1,1));
end
% v = v(:,1:h);
% W = beta*v; % canonical vectors (design)
% w = X*W; % canonical variates (design)
% C = c*W; % canonical contrast (design)
end