-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathARTRACK.py
126 lines (102 loc) · 4.62 KB
/
ARTRACK.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
from netCDF4 import Dataset
import matplotlib.pyplot as plt
import scipy.io as sio
from itertools import groupby
from operator import itemgetter
import time
import math
import scipy.ndimage.measurements as measure
import pickle
import glob
import xarray as xr
class ARNode:
def __init__(self, AR, time, parent, lifetime, ifLast):
self.AR = AR # Assign data
self.time = time
self.parent = parent
self.ifLast = ifLast
self.lifetime = lifetime
def TRACK(t_index, ar_t, parent_node, ARfield, Overlapping_threshold, lifetime_threshold,
count_split, split_threhold):
"""
Output: Final List [end_node_list1, end_node_list2]
(end_node_list: [ARNode1, ARNode2])
"""
#t_index: current timestamp
#ar_t: AR genesis array at 't_index' timestamp: [[0,0,0,1,1,0,0], [0,0,0,0,0,2,2]]
#parent_node: 0 or previous ARnode
#ARfield: array of labeled mask of all time steps
FinalList = []
set_0 = set([0])
num_ar_obj = list(set(np.unique(ar_t)) - set_0)
if len(num_ar_obj) == 0:
return FinalList
else:
end_node_list = []
for i in range(len(num_ar_obj)):
ar_now = ar_t.copy()
ar_now_label = num_ar_obj[i]
# keep only the current AR obj
ar_now[ar_now != ar_now_label] = 0
# parent_node of next step
a = ARNode(ar_now, t_index, parent_node, 0, 0)
if a.parent!=0:
a.lifetime = a.parent.lifetime+1;
else:
a.lifetime = 0
# get the map from the next timestamp
# ar_next = ARfield[t_index+1].copy()
s = [[1,1,1],[1,1,1],[1,1,1]]
labeled_array, num_features = measure.label(ARfield[t_index+1].copy(),structure=s)
new_labeled_array=labeled_array.copy()
set_0 = set([0])
west = labeled_array[:,0].copy()
east = labeled_array[:,-1].copy()
branches = list(set(west) - set_0)
flag_branch = np.zeros(len(west))
for branch in branches:
ab_intersect = list(set(east[west == branch]) - set_0)
if len(ab_intersect) > 0:
for i_intersect in ab_intersect:
if all(v == 0 for v in flag_branch[east == i_intersect]):
new_labeled_array[labeled_array == i_intersect] = branch
flag_branch[east == i_intersect] = branch
else:
new_labeled_array[labeled_array == i_intersect] = \
flag_branch[east == i_intersect][0]
ar_next = new_labeled_array.copy()
# Initialize ar_t for next timestamp
ar_t_1 = np.zeros(np.shape(ar_next))
# find the overlap
ar_next[ar_now != ar_now_label] = 0
# get all the labels in the overlap
labels_in_next = list(set(np.unique(ar_next)) - set_0)
cur_object_grid = np.count_nonzero(ar_now)
num_labels_in_overlap = len(labels_in_next)
if num_labels_in_overlap>0:
if num_labels_in_overlap>1:
count_split = count_split+1
if count_split > split_threhold:
range_for_loop = [0]
else:
range_for_loop = range(0,num_labels_in_overlap)
for n in range_for_loop:
temp_next = ar_next.copy()
temp_next[temp_next != labels_in_next[n]] = 0
temp_next_label = new_labeled_array.copy()
temp_next_label[temp_next_label != labels_in_next[n]] = 0
overlap_grid = np.count_nonzero(temp_next)
if overlap_grid / cur_object_grid >= Overlapping_threshold:
ar_t_1 += temp_next_label
end_node_list += TRACK(t_index+1, ar_t_1, a, ARfield,
Overlapping_threshold, lifetime_threshold,
count_split, split_threhold)
else:
a.ifLast = 1
if a.lifetime >=lifetime_threshold:
end_node_list.append(a)
# end_node_list = [a]
FinalList += end_node_list
FinalList = list(set(FinalList))
return FinalList