-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
172 lines (139 loc) · 6.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import sys
import json
import torch
import argparse
import numpy as np
from torch.nn import BCELoss, CrossEntropyLoss
from torch.utils.data import DataLoader
import hparams
from models import AttRNN, AttCNN
from utils import SaveBest, calculate_F1_score, get_auc_score
from dataset import data_split, supervised_collate_fn
def validate(model, valid_loader, criterion):
all_predictions = []
all_labels = []
avg_loss = 0.0
for batch in valid_loader:
features, labels = batch
features = features.cuda()
labels = labels.cuda()
preds = model(features)
avg_loss += torch.mean(criterion(preds, labels)).item()*len(labels)
all_labels.append(labels.detach().cpu())
all_predictions.append(preds.detach().cpu())
all_predictions = torch.cat(all_predictions)
all_labels = torch.cat(all_labels)
auc_score = get_auc_score(all_predictions, all_labels)
F1_score, precision, recall, acc = calculate_F1_score(torch.gt(all_predictions, hparams.prob_threshold), all_labels)
return avg_loss/len(all_labels), F1_score, acc, precision, recall, auc_score
def train(args, seed):
json_file = open(os.path.join('datasets', args.dataset+'.json'), 'r')
data_dict = json.load(json_file)
train_set, valid_set, test_set = data_split(data_dict,
semi=args.semi,
split_type=args.split_type,
positive_patient_num=hparams.positive_patient_num,
negative_patient_num=hparams.negative_patient_num,
seed=seed)
if hparams.model_type == "AttRNN":
model = AttRNN().cuda()
else:
model = AttCNN().cuda()
criterion = BCELoss(reduction='none')
optimizer = torch.optim.Adam(model.parameters(),
lr=hparams.learning_rate,
weight_decay=hparams.weight_decay)
save_best_cp = SaveBest("sup")
if args.semi:
# semi-supervised learning algorithm
pass
else:
# supervsied learning algorithm
collate_fn = supervised_collate_fn(num_of_frame=hparams.num_of_frame)
valid_collate_fn = supervised_collate_fn(num_of_frame=hparams.num_of_frame, add_noise=False)
train_loader = DataLoader(train_set,
num_workers=hparams.num_workers, shuffle=True,
batch_size=hparams.batch_size,
collate_fn=collate_fn)
valid_loader = DataLoader(valid_set,
num_workers=hparams.num_workers, shuffle=False,
batch_size=hparams.batch_size,
collate_fn=valid_collate_fn)
test_loader = DataLoader(test_set,
num_workers=hparams.num_workers, shuffle=False,
batch_size=hparams.batch_size,
collate_fn=valid_collate_fn)
for epoch in range(hparams.num_epochs):
if epoch >= 10:
num = 0.9**(epoch - 9)
lr = max(hparams.learning_rate*num, hparams.learning_rate_min)
for g in optimizer.param_groups:
g['lr'] = lr
print("Epoch: {}, lr: {:.4f}".format(epoch, lr))
for batch in train_loader:
features, labels = batch
features = features.cuda()
labels = labels.cuda()
model.zero_grad()
preds = model(features)
loss = criterion(preds, labels)
loss_weight = (labels*(hparams.positive_negative_loss_ratio-1) + 1)
loss = torch.mean(loss*loss_weight)
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), hparams.grad_clip_thresh)
optimizer.step()
model.eval()
train_loss, train_F1, train_acc, train_precision, train_recall, train_auc = validate(model, train_loader, criterion)
print("Epoch: {}. train_loss: {:.3f}, train_F1: {:.3f}, train_acc: {:.3f}, train_auc: {:.3f}".format(
epoch, train_loss, train_F1, train_acc, train_auc))
val_loss, val_F1, val_acc, val_precision, val_recall, val_auc = validate(model, valid_loader, criterion)
print("Epoch: {}. valid_loss: {:.3f}, valid_F1: {:.3f}, valid_acc: {:.3f}. valid_auc: {:.3f}".format(
epoch, val_loss, val_F1, val_acc, val_auc))
if save_best_cp.apply(val_F1): #
print("saving best model...")
model_fname = os.path.join('test', 'model_save_dir', "best_model.ckpt")
torch.save(model.state_dict(), model_fname)
model.train()
model.eval()
test_loss, test_F1, test_acc, test_precision, test_recall, test_auc = validate(model, test_loader, criterion)
print("Last Epoch, test_loss: {:.3f}, test_F1: {:.3f}, test_acc: {:.3f}, test_auc: {:.3f}".format(
test_loss, test_F1, test_acc, test_auc))
model.load_state_dict(torch.load('test/model_save_dir/best_model.ckpt'))
model.eval()
test_loss, test_F1, test_acc, test_precision, test_recall, test_auc = validate(model, test_loader, criterion)
print("Best Epoch: {}, val_F1: {:.3f}, test_loss: {:.3f}, test_F1 {:.3f}, test_acc: {}, test_auc: {:.3f}".format(
save_best_cp.best_epoch, save_best_cp.best_val, test_loss, test_F1, test_acc, test_auc))
return test_F1, test_acc, test_precision, test_recall, test_auc
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--dataset", type=str, default="coswara",
choices=["coswara", "coughvid"]);
parser.add_argument("-s", "--semi", type=bool, default=False)
parser.add_argument("--split_type", type=str, default="random",
choices=["speaker", "7-1-1", "random"])
args = parser.parse_args()
# split_type of "speaker" or "7-1-1" are not supported for coughvid dataset
if args.dataset == "coughvid" and args.split_type != "random":
print("Error: split_type of \"speaker\" or \"7-1-1\" are not supported for coughvid dataset")
sys.exit()
F1_list = []
acc_list = []
precision_list = []
recall_list = []
auc_list = []
for seed in hparams.random_seeds:
test_F1, test_acc, test_precision, test_recall, test_auc = train(args, seed)
F1_list.append(test_F1)
acc_list.append(test_acc)
precision_list.append(test_precision)
recall_list.append(test_recall)
auc_list.append(test_auc)
F1_list = np.asarray(F1_list)
acc_list = np.asarray(acc_list)
precision_list = np.asarray(precision_list)
recall_list = np.asarray(recall_list)
auc_list = np.asarray(auc_list)
print(F1_list.mean(), acc_list.mean(), precision_list.mean(), recall_list.mean(), auc_list.mean())
print(F1_list.std(), acc_list.std(), precision_list.std(), recall_list.std(), auc_list.std())