-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_scrnaDEGs_Jehan.R
221 lines (153 loc) · 6.04 KB
/
run_scrnaDEGs_Jehan.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# title: draw vlnplot with p-values using ggpubr package
### Function: Vlnplot with p-values
drawVlnplotwPval<- function(gene_signature, file_name, test_sign1,test_sign2,test_sign3,test_sign4, plabel="p.signif"){
plot_case1 <- function(signature, y_max = NULL)
{
VlnPlot(seurat, features = signature,
pt.size = 0.1,group.by = "sample", y.max = y_max) +
stat_compare_means(comparisons = test_sign1, label = plabel,label.y = (y_max_list[[gene]] ))+ labs(subtitle=paste0("cluster=",setClust))+
stat_compare_means(comparisons = test_sign2, label = plabel,label.y = (y_max_list[[gene]] + 0.5))+
stat_compare_means(comparisons = test_sign3, label = plabel,label.y = (y_max_list[[gene]] + 1))+
stat_compare_means(comparisons = test_sign4, label = plabel,label.y = (y_max_list[[gene]] + 1.5))
}
plot_list <- list()
y_max_list <- list()
for (gene in gene_signature)
{
yvalue<- max(FetchData(seurat, vars = gene))
plot_list[[gene]] <- plot_case1(gene)
y_max_list[[gene]] <- max(plot_list[[gene]]$data[[gene]])
plot_list[[gene]] <- plot_case1(gene, y_max = (y_max_list[[gene]] + 4) )
}
print(y_max_list)
cowplot::plot_grid(plotlist = plot_list)
file_name <- paste0(file_name, ".png")
ggsave(file_name, width = 14, height = 8)
}
###================================================
#library
library(Seurat)
library(ggplot2)
library(ggpubr)
# user's parameters
dirIn <- "/path/to/input_rds/"
finrds <- "obj_DS_merged_1.rds"
gene_sig <- c("Il17a","Dcn") # get target genes
fileName <- "Vlnplot_comparsion_DS_genes" # outfilename
setClust <- "1" # set cluster number to check: e.g between 1-19
# reorder samples in Vlnplot
setwd(dirIn)
seurat<- readRDS(finrds)
seurat$sample <- factor(x = seurat$sample, levels = c('NS', 'DS1','DS3','DS5','DS10'))
print(table(seurat$seurat_clusters))
# subset
if(exists("setClust")){
Idents(seurat)<-seurat$seurat_clusters
seurat<- subset(seurat, subset=seurat_clusters==setClust)
}
# set comparison
comparisons1 <- list(c("NS", "DS1")) # list(names(table(objA$sample)))
comparisons2 <- list(c("NS", "DS3"))
comparisons3 <- list(c("NS", "DS5"))
comparisons4 <- list(c("NS", "DS10"))
setwd(dirOut)
# draw vlnplot with p-value from wilcox.test
# options:
# plabel=("p.signif","p.format","p.adj",)
if(exists("setClust")){fileName=paste0(fileName,"_cl_",setClust)}
drawVlnplotwPval(gene_signature = gene_sig, file_name = fileName, test_sign1 = comparisons1, test_sign2 =comparisons2, test_sign3 =comparisons3, test_sign4 =comparisons4,plabel="p.format")
### DEG analysis by subset of celltype
# test DEGs
dirIn <- "/input/rds/path/" # input data(.rds) path
dirOut <- "out_DEGs" #output dir name
fin <- "GDT.rds" # R obj file name
prefix <- "gdT" # data set name
# library
library(Seurat)
library(ggrepel)
# function
setDir <- function(dirIn, dirOut){
setwd(dirIn)
dirIn <- getwd()
if(!file.exists(dirOut))
dir.create(dirOut)
setwd(dirOut)
dirOut <- getwd()
cat("dirOut: ",dirOut,"\n")
return(dirOut)
}
# dirOut
dirOut<-setDir(dirIn,dirOut)
# load data
setwd(dirIn)
objA <- readRDS(fin)
objA$celltype.subset <- paste(objA$seurat_clusters, objA$orig.ident, sep = "_")
table(objA$celltype.subset)
# DEGs
DefaultAssay(object = objA) <- "RNA"
Idents(objA) <- objA$celltype.subset
objA.marker <- FindMarkers(objA, ident.1 = "2_Pinkie", ident.2 = "2_B6",
logfc.threshold = 0.25,min.pct = 0.1, test.use = "wilcox")
# option: wilcox and others https://satijalab.org/seurat/articles/de_vignette.html
head(sub1.marker)
objA.marker$Gene <- rownames(objA.marker)
dim(objA.marker)
# save DEG output
setwd(dirOut)
write.csv(objA.marker,paste0("DEG_",prefix,"_bysubgroup.vs.cluster.csv"), row.names = T)
# draw volc plot for significant DEGs
# cut-off
adjpValue <- 0.001
fcvalue <- 0.5
# vol plot
DEGout <- objA.marker
sTitle <- prefix
DEGout$Significant <- ifelse(DEGout$p_val_adj < adjpValue & abs(DEGout$avg_log2FC) > fcvalue, "FDR < 0.001", "Not Sig")
head(DEGout)
p1 <- ggplot(DEGout, aes(x = avg_log2FC, y = -log10(p_val_adj))) +
geom_point(aes(color = Significant)) + ggtitle(paste0("Volcano plot of DEGs:",sTitle)) +
scale_color_manual(values = c("red", "black")) +
theme_bw(base_size = 12) + theme(legend.position = "bottom") +geom_text_repel(
data = DEGout %>% filter (abs(DEGout$avg_log2FC) > fcvalue & DEGout$p_val_adj < adjpValue ),
aes(label = Gene),size = 5, box.padding = unit(0.35, "lines"),
point.padding = unit(0.3, "lines"))+
geom_vline(xintercept=c(-1*fcvalue, fcvalue), col="red")
# save plot
pdf(paste0("plot_volcano_DEG_",prefix,".pdf"))
print(p1)
dev.off()
# run DEGs
objA <- runDEGsubsetfrom2CombinedData(objA,prefix,dirOut = dirOut,optAssay = "RNA")
runDEGsubsetfrom2CombinedData <- function(objectA,prefix,dirOut,optAssay){
# set dir
subDir <- paste0("out_DEGs_bySubset_",prefix)
setwd(dirOut)
dir.create(subDir)
setwd(subDir)
Idents(objectA) <- objectA$celltype.subset
# get celltype
print(table(objectA$celltype.subset))
ctypelist <- names(table(objectA$seurat_clusters))
ctypelist
clist <- names(table(objectA$celltype.subset))
outDegs <- data.frame("Celltype","set1","set2","#DEGs")
for (i in 1:length(ctypelist)) {
print(ctypelist[i])
cid <- ctypelist[i]
cpair <- grep(cid,clist,value = T)
print(cpair)
cpair.marker <- FindMarkers(objectA, ident.1 = cpair[1], ident.2 = cpair[2], verbose = FALSE, assay=optAssay)
cat("cpair: ",cpair,": DEG#: ",dim(cpair.marker)[1],"\n")
write.csv(cpair.marker,paste0("DEGs_",cpair[1],".vs.",cpair[2],".csv"))
eachdeg <- c(ctypelist[i],cpair[1],cpair[2],dim(cpair.marker)[1])
outDegs <- rbind(outDegs,eachdeg)
rm(eachdeg)
saveRDS(cpair.marker,paste0("DEGs.marker_",prefix,"_",cid,".rds"))
}
colnames(outDegs) <- outDegs[1,]
outDegs <- outDegs[-1,]
write.csv(outDegs,paste0("summary_DEGs_",prefix,"_bySubset.celltype.csv"),row.names = F)
return(objectA)
}
# test DEGsubset
# integ.p90 <- runDEGsubsetfrom2CombinedData(integ.p90,prefix = paste0(prefix,"_test"),dirOut = dirOut)