-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcoverageplotmice.R
79 lines (64 loc) · 2.51 KB
/
coverageplotmice.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# title: run_DARscATAC_v2.R
# parameters: finrds, prefix, setGrp
# usage: Rscript --vanilla run_DARscATAC_v2.R /path/atac.rds prefix setGrp(e .g.predicted.id)
if(F){
finrds <- "/storage/chen/data_share_folder/22_10x_hs_AnteriorSegment_data/scAtacQC/data/test_merge_atac_objs/out_merged_atac_objs_atac_TM2/obj_annotAtac_atac_TM2_wcompeaks_wharmony.rds"
prefix <- "TM_combined"
setGrp <- "predicted.id" # choose a group name(category col name) in the meta data to perform DAR
mpct <- 0.2 # default: 0.1
}
# check parameters
args = commandArgs(trailingOnly=TRUE)
print(args)
if (length(args)!=3) {
stop("please type 3 parameters:input rds file(w/path), prefix, category name to calculate DAR
(e.g. seurat_clusters, predicted.id, or celltype) ", call.=FALSE)
} else {
# default output file
finrds <- args[1]
prefix <- args[2]
setGrp <- args[3]
}
# mcpt: min of pct per feature
mpct <- 0.2 # default: 0.1
# library
library(Signac)
library(Seurat)
library(JASPAR2020)
library(TFBSTools)
library(BSgenome.Hsapiens.UCSC.hg38)
library(BSgenome.Mmusculus.UCSC.mm10)
library(patchwork)
library(ggplot2)
library(dplyr)
library(RColorBrewer)
set.seed(1234)
# get sys.time: format(Sys.time(), "%d_%b_%Y_t%H.%M")
# set src dir
srcDir <-"/storage/chen/data_share_folder/22_10x_hs_AnteriorSegment_data/scAtacQC/"
source(paste0(srcDir,'R_functions_scATAC.R'))
# load data
atac <- readRDS(finrds)
print(atac)
# create out dir
dirIn <- getwd()
dirOut <- paste0("out_atac_DAR_",prefix)
dirOut <- setDir(dirIn, dirOut)
# check data
# plot
#p1<-DimPlot(atac,group.by="seurat_clusters",label = TRUE, pt.size = 0.1) + NoLegend()
#p2<-DimPlot(pbmc,group.by="celltype",label = TRUE, pt.size = 0.1) #scpred_prediction
p2<-DimPlot(atac,group.by="predicted.id",label = TRUE, pt.size = 0.1) #scpred_prediction
#p3<-DimPlot(pbmc,group.by="seqType",label = F, pt.size = 0.1) + labs(caption = paste0("- Data: ",prefix))
#p3<-DimPlot(atac,group.by=Idents(atac),label = F, pt.size = 0.1) + labs(caption = paste0("- Data: ",prefix))
setwd(dirOut)
#pdf(paste0(prefix, "_2.2_featureplot_celltype.markers.pdf"),width = 9, height =15 )
png(paste0("01_umap_",prefix,"_2.png"), width=900, height = 800, units="px")
print(p2) #/p3)
dev.off()
# call peaks
# coverage plot
setwd(dirOut)
png(paste0("02_1_plot_coverage_",prefix,".png"), width=500, height = 400, units="px")
CoveragePlot(object = atac, group.by = "predicted.id", region = "Ccl2")
dev.off()