-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecursive.py
274 lines (268 loc) · 10.3 KB
/
recursive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from pyTsetlinMachineParallel.tm import MultiClassTsetlinMachine
from pyTsetlinMachineParallel.tm import MultiClassConvolutionalTsetlinMachine2D
import numpy as np
machine = "TM"
name = "Trond"
#name = "Kristoffer"
#dim = "9x9Natsukaze_"
#dim = "90_9x9Aya_"
#loadfile = "0302-1057"
#loadfile = "0304-1027"
dim = "90_100T_9x9Aya_"
#loadfile = "0310-1211"
loadfile = "0310-1342"
inndata = "Draw"
numb = "0"
numbboard = 88
global X_train,Y_train,X_test,Y_test,m, loadedstate
def init(dim, machine, loadfile):
global X_train, Y_train, X_test, Y_test, m, loadedstate
inndata = "Draw"
boost = 1
with open("Results/" + name + "/" + machine + "/" + machine + dim + loadfile + ".csv", 'r') as file:
loadarray = []
for line in file.readlines():
lineds = [str(x) for x in line.strip().split(',')]
if lineds[-1] == "":
loadarray.append(lineds[:-1])
else:
loadarray.append(lineds)
if loadarray[0][0][10] == "T":
machine = "TM"
else:
machine = "cTM"
clauses = int(loadarray[2][1][:-2])
Threshold = int(loadarray[3][1][:-2])
S = int(loadarray[4][1][:-2])
if machine == "cTM":
Window_X = int(loadarray[5][1][:-2])
Window_Y = int(loadarray[6][1][:-2])
Shape_X = int(loadarray[7][1][:-2])
Shape_Y = int(loadarray[8][1][:-2])
Shape_Z = int(loadarray[9][1][:-2])
train_data = np.loadtxt("Data/" + dim + inndata + numb + "train", delimiter=",")
test_data = np.loadtxt("Data/" + dim + inndata + numb + "test", delimiter=",")
if machine == "TM":
X_train = train_data[:, 0:-1]
Y_train = train_data[:, -1]
X_test = test_data[:, 0:-1]
Y_test = test_data[:, -1]
m = MultiClassTsetlinMachine(clauses, Threshold, S, boost_true_positive_feedback=boost, weighted_clauses=True)
if machine == "cTM":
X_train = train_data[:, 0:-1].reshape(train_data.shape[0], Shape_X, Shape_Y, Shape_Z)
Y_train = train_data[:, -1]
X_test = test_data[:, 0:-1].reshape(test_data.shape[0], Shape_X, Shape_Y, Shape_Z)
Y_test = test_data[:, -1]
m = MultiClassConvolutionalTsetlinMachine2D(clauses, Threshold, S, (Window_X, Window_Y), boost_true_positive_feedback=boost, weighted_clauses=True)
loadedstate = np.load("Results/" + "Trond" + "/" + machine + "/" + machine + dim + loadfile +"kFold"+numb + ".npy", allow_pickle=True)
m.fit(X_train, Y_train, epochs=0, incremental=True)
m.set_state(loadedstate)
def transform(table,size):
black = table[:int(len(table)/2)]
white = table[int(len(table)/2):]
bwtable = []
for i in range(size*size):
if table[i] == table[i+size*size]:
bwtable.append(".")
elif table[i] == 1:
bwtable.append("b")
elif table[i+size*size]:
bwtable.append("w")
else:
print("Something went wrong!")
return bwtable
def reform(table,size):
black = []
white = []
for i in range(size*size):
if table[i] == ".":
black.append(0.)
white.append(0.)
elif table[i] == "b" or table[i] == "B":
black.append(1.)
white.append(0.)
elif table[i] == "w" or table[i] == "W":
white.append(1.)
black.append(0.)
else:
print("Something went wrong!!")
return black+white
def printableTable(table, size):
underline = ["A","B","C","D","E","F","G","H","I "]
mellomrom = " "
printTable = []
printTable.append("-------------------------------------------")
printTable.append("Correct outcome: %i Predicted outcome: %i " % (Y_train[numbboard], table[4]))
scoreLine = "%s Move: %s Score: %i " % (table[3], table[2], table[5][0])
printTable.append(scoreLine+length(table[5][0]))
for column in range(size):
start = str(size-column)+mellomrom
tableLine = start
for row in range(size):
tableLine += table[1][size*column+row] + mellomrom
tableLine+= mellomrom+mellomrom+mellomrom+mellomrom+mellomrom+mellomrom+mellomrom
printTable.append(tableLine)
uLine = " "
for i in range(size):
uLine +=underline[i] + mellomrom
printTable.append(uLine)
return printTable
def length(numb): #alters space depending on length of score
mellomrom = ""
for i in range(6-int(len(str(numb)))):
mellomrom += " "
return mellomrom
def printTable(table,position):
mellomrom = " "
line = ""
for i in range(position):
line +=mellomrom
for row in table:
print(line+row)
counter = 0
def moveTransform(number,size): #change the moves into letter/number variation
if(number < 0): return "Start "
Alphabet = ["A", "B", "C", "D", "E", "F", "G", "H", "I"]
alphabet = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
a = int(number/size)
b = number%size
return alphabet[b]+str(size-a)+" "
def findEmpty(table, player,size,tm):
global counter
alteredTables = []
for i in range(len(table[1])):
if table[1][i] == ".":
tempTable = np.copy(table[0])
tempTable2 = tableCopy(table[1])
tempTable2[i] = player
if player == "B":
tempTable[i] = 1
else:
tempTable[i + 81] = 1
outcome, score = predictSum(tm,tempTable)
alteredTables.append([tempTable,tempTable2,moveTransform(i,9),player, outcome[0], score])
alteredTables = topFive(alteredTables,player)
for i in range(len(alteredTables)):
alteredTables[i].append(printableTable(
[alteredTables[i][0], alteredTables[i][1], alteredTables[i][2], alteredTables[i][3], alteredTables[i][4],
alteredTables[i][5]], size))
return alteredTables
def tableCopy(table):
newTable = []
for i in range(len(table)):
newTable.append(table[i])
return newTable
def recursive(bwtable,player,size,moves,tm):
if moves == 0: return bwtable
moves -= 1
newBoards = findEmpty(bwtable,player,size,tm)
for i in newBoards:
if i[3] == "B":
nplayer = "W"
else:
nplayer = "B"
i.append(recursive(i, nplayer, size, moves,tm))
bwtable.append(newBoards)
#bwtable[0] have bitboard
#bwtable[1] have black/white table
#bwtable[2] have converted moves,
#bwtable[3] have player
#bwtable[4] have outcome
#bwtable[5] have score make as table? tmscore = index 0 go score =index 1 or vice versa
#bwtable[6] have printableoutput
#bwtable[7] have list of top5 children nodes (newBoards)
return bwtable
def predictSum(tm, boards):
newArray = np.array([boards])
result = tm.predict2(newArray)
outcome = result[0]
score = result[1]
return outcome, score
def topFive(boards, player):
whiteBoard = []
blackBoard = []
drawBoard = []
for board in boards:
if board[4] == 0:
whiteBoard.append(board)
if board[4] == 1:
blackBoard.append(board)
if board[4] == 2:
drawBoard.append(board)
if player == "W":
if len(whiteBoard) == 5:
return whiteBoard
elif len(whiteBoard) > 5:
return topFiveCalculate(whiteBoard, 5)
elif len(whiteBoard) < 5:
if len(whiteBoard) +len(drawBoard) == 5:
return whiteBoard + drawBoard
elif len(whiteBoard) + len(drawBoard) > 5:
return whiteBoard + topFiveCalculate(drawBoard, 5-len(whiteBoard))
elif len(whiteBoard) + len(drawBoard) < 5:
return whiteBoard + drawBoard + bottomFiveCalculate(blackBoard, 5 - len(whiteBoard)-len(drawBoard))
if player == "B":
if len(blackBoard) == 5:
return blackBoard
elif len(blackBoard) > 5:
return topFiveCalculate(blackBoard,5)
elif len(blackBoard) < 5:
if len(blackBoard) +len(drawBoard) == 5:
return blackBoard + drawBoard
elif len(blackBoard) + len(drawBoard) > 5:
return blackBoard + topFiveCalculate(drawBoard, 5-len(blackBoard))
elif len(blackBoard) + len(drawBoard) < 5:
return blackBoard + drawBoard + bottomFiveCalculate(whiteBoard, 5 - len(blackBoard)-len(drawBoard))
def topFiveCalculate(boards, numb):
list =[]
for i in range(numb):
tempScore = 0
tempID = 0
for j in range(len(boards)):
if abs(boards[j][5][0]) > tempScore:
tempScore = abs(boards[j][5][0])
tempID = j
boards, list = sortList(boards, list, tempID)
return list
def bottomFiveCalculate(boards,numb):
list = []
for i in range(numb):
tempScore = 0
tempID = 0
for j in range(len(boards)):
if abs(boards[j][5][0]) < tempScore:
tempScore = abs(boards[j][5][0])
tempID = j
boards, list = sortList(boards,list,tempID)
return list
def sortList(boards,list,iD):
newList = []
list.append(boards[iD])
for i in range(len(boards)):
if i != iD:
newList.append(boards[i])
return newList, list
def main():
moves = 2
size = 9
player = "B"
init(dim,machine,loadfile)
initBoard = X_train[numbboard]
newArray = np.array([initBoard])
result = m.predict2(newArray)
outcome = result[0]
score = result[1]
bwtable = transform(initBoard, size)
bwTable = [initBoard,bwtable, "Initial ", player, outcome, score]
pTable = printableTable(bwTable, size)
bwTable.append(pTable)
tree = recursive(bwTable, player, size, moves,m)
printTree(tree,0)
def printTree(table, pos):
printTable(table[6], pos)
for i in range(13):
print(table[7][0][6][i]+table[7][1][6][i]+table[7][2][6][i]+table[7][3][6][i]+table[7][4][6][i])
for i in range(len(table[7])):
if(len(table[7][i])) == 9:
printTree(table[7][i],i)
main()