-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTM_weighted.py
80 lines (63 loc) · 2.28 KB
/
TM_weighted.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from pyTsetlinMachine.tm import MultiClassTsetlinMachine
import numpy as np
from time import time
# Parameters
# split_ratio = 0.9
epochs = 50
clauses = 1000
T = 241
s = 176
k_fold_amount = 10
print("epochs = ", epochs)
print("clauses = ", clauses)
print("T = ", T)
print("s = ", s, "\n")
X_train = np.array([])
Y_train = np.array([])
X_test = np.array([])
Y_test = np.array([])
base_path_start = "Data/KfoldDataStaticTransformed/"
base_path_end = "statickfoldcorrected.data"
# path_train = "Data/eventrain.data"
# path_test = "Data/eventest.data"
def merging_k_fold(file_amount, _clauses, _T, _s, _epochs):
results = []
for i in range(file_amount):
train_string = base_path_start + str(i) + "train" + base_path_end
test_string = base_path_start + str(i) + "test" + base_path_end
score = loading_data(train_string, test_string, _clauses, _T, _s, _epochs)
results.append(score)
return results
def loading_data(_train, _test, _clauses, _T, _s, _epochs):
print("Loading training data..")
train_data = np.loadtxt(_train, delimiter=",")
# print("..using train dataset: ", _path_train)
global X_train
global Y_train
X_train = train_data[:, 0:-1]
Y_train = train_data[:, -1]
print("Loading test data..")
test_data = np.loadtxt(_test, delimiter=",")
# print("..using test dataset: ", _path_test)
global X_test
global Y_test
X_test = test_data[:, 0:-1]
Y_test = test_data[:, -1]
return TM(_clauses, _T, _s, epochs)
def TM(_clauses, _T, _s, _epochs):
print("Creating MultiClass Tsetlin Machine.")
tm = MultiClassTsetlinMachine(_clauses, _T, _s, boost_true_positive_feedback=0, weighted_clauses=True)
print("Starting TM with weighted clauses..")
print("\nAccuracy over ", _epochs, " epochs:\n")
for i in range(_epochs):
start = time()
tm.fit(X_train, Y_train, epochs=1, incremental=True)
stop = time()
result = 100 * (tm.predict(X_test) == Y_test).mean()
print("#%d Accuracy: %.2f%% (%.2fs)" % (i + 1, result, stop - start))
mean_accuracy = 100 * (tm.predict(X_test) == Y_test).mean()
print("Mean Accuracy:", mean_accuracy)
print("Finished running.. \n")
return mean_accuracy
score = merging_k_fold(k_fold_amount, clauses, T, s, epochs)
print(score)