-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathm2det_ros.py
executable file
·158 lines (130 loc) · 5.22 KB
/
m2det_ros.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#! /usr/bin/env python
# -*- coding:utf-8 -*-
import os
import cv2
import numpy as np
import time
import rospy, roslib
from torch.multiprocessing import Pool
from utils.nms_wrapper import nms
from utils.timer import Timer
from configs.CC import Config
import argparse
from layers.functions import Detect, PriorBox
from m2det import build_net
from data import BaseTransform
from utils.core import *
from utils.pycocotools.coco import COCO
from sensor_msgs.msg import Image
from darknet_dnn.msg import *
from cv_bridge import CvBridge, CvBridgeError
#parameters
show_result = rospy.get_param("/m2det_ros/show_result")
subscribe_image = rospy.get_param("/m2det_ros/subscribe_image")
print_info(' -------------------------------------------------------------\n'
'| M2Det ROS |\n'
' -------------------------------------------------------------', ['blue','bold'])
global cfg
#cfg = Config.fromfile(args.config)
cfg = Config.fromfile(roslib.packages.get_pkg_dir("m2det_ros")+"/configs/m2det512_vgg.py")
anchor_config = anchors(cfg)
print_info('The Anchor info: \n{}'.format(anchor_config))
priorbox = PriorBox(anchor_config)
net = build_net('test',
size = cfg.model.input_size,
config = cfg.model.m2det_config)
#init_net(net, cfg, args.trained_model)
init_net(net, cfg, roslib.packages.get_pkg_dir("m2det_ros")+"/weights/m2det512_vgg.pth")
print_info('===> Finished constructing and loading model',['yellow','bold'])
net.eval()
with torch.no_grad():
priors = priorbox.forward()
if cfg.test_cfg.cuda:
net = net.cuda()
priors = priors.cuda()
#cudnn.benchmark = True
else:
net = net.cpu()
_preprocess = BaseTransform(cfg.model.input_size, cfg.model.rgb_means, (2, 0, 1))
detector = Detect(cfg.model.m2det_config.num_classes, cfg.loss.bkg_label, anchor_config)
cats = [_.strip().split(',')[-1] for _ in open(roslib.packages.get_pkg_dir("m2det_ros")+'/data/coco_labels.txt','r').readlines()]
labels = tuple(['__background__'] + cats)
print_info('===> Detection Start',['blue','bold'])
def _to_color(indx, base):
""" return (b, r, g) tuple"""
base2 = base * base
b = 2 - indx / base2
r = 2 - (indx % base2) / base
g = 2 - (indx % base2) % base
return b * 127, r * 127, g * 127
base = int(np.ceil(pow(cfg.model.m2det_config.num_classes, 1. / 3)))
colors = [_to_color(x, base) for x in range(cfg.model.m2det_config.num_classes)]
def pub_result(im, bboxes, scores, cls_inds, thr=0.2):
imgcv = np.copy(im)
h, w, _ = imgcv.shape
boundingBoxes = BoundingBoxes()
for i, box in enumerate(bboxes):
if scores[i] < thr:
continue
cls_indx = int(cls_inds[i])
box = [int(_) for _ in box]
mess = '%s: %.3f' % (labels[cls_indx], scores[i])
boundingBox = BoundingBox()
boundingBox.Class = labels[cls_indx]
boundingBox.probability = scores[i]
boundingBox.x = box[0]
boundingBox.y = box[1]
boundingBox.width = box[2]
boundingBox.height = box[3]
boundingBoxes.boundingBoxes.append(boundingBox)
if show_result == True:
thick = int((h + w) / 300)
cv2.rectangle(imgcv,
(box[0], box[1]), (box[2], box[3]),
colors[cls_indx], thick)
cv2.putText(imgcv, mess, (box[0], box[1] - 7),
0, 1e-3 * h, colors[cls_indx], thick // 3)
pub_bbox = rospy.Publisher("m2det_ros/detetct_result", BoundingBoxes, queue_size=1)
pub_bbox.publish(boundingBoxes)
if show_result == True:
cv2.imshow("result", imgcv)
cv2.waitKey(1)
captureImage = Image()
def imgCallback(msg):
global captureImage
captureImage = msg
try:
cv_img = CvBridge().imgmsg_to_cv2(captureImage, "bgr8")
w,h =cv_img.shape[1],cv_img.shape[0]
img = _preprocess(cv_img).unsqueeze(0)
if cfg.test_cfg.cuda:
img = img.cuda()
scale = torch.Tensor([w,h,w,h])
out = net(img)
boxes, scores = detector.forward(out, priors)
boxes = (boxes[0]*scale).cpu().numpy()
scores = scores[0].cpu().numpy()
allboxes = []
for j in range(1, cfg.model.m2det_config.num_classes):
inds = np.where(scores[:,j] > cfg.test_cfg.score_threshold)[0]
if len(inds) == 0:
continue
c_bboxes = boxes[inds]
c_scores = scores[inds, j]
c_dets = np.hstack((c_bboxes, c_scores[:, np.newaxis])).astype(np.float32, copy=False)
soft_nms = cfg.test_cfg.soft_nms
keep = nms(c_dets, cfg.test_cfg.iou, force_cpu = soft_nms) #min_thresh, device_id=0 if cfg.test_cfg.cuda else None)
keep = keep[:cfg.test_cfg.keep_per_class]
c_dets = c_dets[keep, :]
allboxes.extend([_.tolist()+[j] for _ in c_dets])
allboxes = np.array(allboxes)
boxes = allboxes[:,:4]
scores = allboxes[:,4]
cls_inds = allboxes[:,5]
pub_result(cv_img, boxes, scores, cls_inds)
except CvBridgeError as e:
print(e)
if __name__ == "__main__":
rospy.init_node("m2det_ros")
rospy.Subscriber(subscribe_image, Image, imgCallback)
rospy.spin()