-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
136 lines (105 loc) · 4.44 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
from torchtext.vocab import build_vocab_from_iterator
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from os.path import exists
from tqdm import tqdm
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f'Importing Training Data')
path_src = "dataset/train.seg.th"
print(f'Path to train source: {path_src}')
th_src = open(path_src).read().splitlines()
path_trg = "dataset/train.seg.zh"
print(f'Path to train target: {path_trg}')
zh_target = open(path_trg).read().splitlines()
print(f'Importing Validation Data')
valid_path_src = "dataset/valid.seg.th"
print(f"Path to validation source: {valid_path_src}")
valid_th_src = open(valid_path_src).read().splitlines()
valid_path_trg = "dataset/valid.seg.zh"
print(f"Path to validation target: {valid_path_trg}")
valid_zh_trg = open(valid_path_trg).read().splitlines()
BATCH_SIZE = 24
path_to_th_vocab = "th_vocab.pth"
path_to_zh_vocab = "zh_vocab.pth"
def th_tokenizer(text):
return text.split(' ')
def zh_tokenizer(text):
return text.split(' ')
def add_tokens(vocab, padding_id=0, start_id=1, end_id=2):
padding_token = '<pad>'
start_token = '<start>'
end_token = '<end>'
vocab.insert_token(padding_token,padding_id)
vocab.insert_token(start_token,start_id)
vocab.insert_token(end_token,end_id)
return vocab
def tensor_to_string(tensor,vocab,padding_id=0, end_id = 2):
str = ''
prior_id = -1
for id in list(tensor):
if(id == padding_id or prior_id == end_id):
break
str += vocab.get_itos()[id] + ' '
prior_id = id
return str
def get_padded_sequences(text_list, tokenizer, vocab, padding_id=0, start_id=1, end_id=2, max_length=256):
seq = []
for sentence in tqdm(text_list):
cur = [start_id]
for token in tokenizer(sentence):
cur.append(vocab[token])
cur.append(end_id)
for _ in range(max_length - len(cur)):
cur.append(padding_id)
seq.append(torch.tensor(cur, dtype=torch.long).to(device))
return seq
class ThaiChineseDataset(Dataset):
def __init__(self, src_sequences, trg_sequences):
self.src_sequences = src_sequences
self.trg_sequences = trg_sequences
def __len__(self):
return len(self.src_sequences)
def __getitem__(self, idx):
return {'src':self.src_sequences[idx], 'trg':self.trg_sequences[idx]}
if exists(path_to_th_vocab) and exists(path_to_zh_vocab):
print(f"Importing vocabulary set")
print(f"source vocabulary path: {path_to_th_vocab}")
# Importing Thai Vocab
th_vocab = torch.load(path_to_th_vocab)
th_vocab_size = len(th_vocab.vocab.get_itos())
th_vocab.set_default_index(th_vocab_size)
th_vocab.append_token("<unk>")
print(f"target vocabulary path: {path_to_zh_vocab}")
# Importing Chinese Vocab
zh_vocab = torch.load(path_to_zh_vocab)
zh_vocab_size = len(zh_vocab.get_itos())
zh_vocab.set_default_index(zh_vocab_size)
zh_vocab.append_token("<unk>")
else:
print(f"Creating vocabulary set")
# Create a vocabulary for Thai input text
th_vocab = add_tokens(build_vocab_from_iterator(map(th_tokenizer, th_src)))
th_vocab_size = len(th_vocab.vocab.get_itos())
th_vocab.set_default_index(th_vocab_size)
# Create a vocabulary for Chinese target text
zh_vocab = add_tokens(build_vocab_from_iterator(map(zh_tokenizer, zh_target)))
zh_vocab_size = len(zh_vocab.get_itos())
zh_vocab.set_default_index(zh_vocab_size)
print("Padding and Tokenizing Data")
# Convert each word in the Thai input text to its corresponding ID
th_sequences = get_padded_sequences(th_src, th_tokenizer, th_vocab)
zh_sequences = get_padded_sequences(zh_target, zh_tokenizer, zh_vocab)
valid_th_sequences = get_padded_sequences(valid_th_src, th_tokenizer, th_vocab)
valid_zh_sequences = get_padded_sequences(valid_zh_trg, zh_tokenizer, zh_vocab)
print("Making bathces")
print(f"BATCH_SIZE: {BATCH_SIZE}")
# Create a dataset from the Thai and Chinese sequences
dataset = ThaiChineseDataset(th_sequences, zh_sequences)
# Create a data loader with batch size 32 and shuffling
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
# Create validation dataset
valid_dataset = ThaiChineseDataset(valid_th_sequences, valid_zh_sequences)
# Create a data loader for validation dataset
valid_dataloader = DataLoader(valid_dataset, batch_size=BATCH_SIZE)
print("------------------------------")