-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathserver.py
executable file
·208 lines (173 loc) · 6.39 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#!/usr/bin/env python3
import nltk
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
import numpy
import random
import json
import pickle
import tensorflow
import tflearn
from library import calculator
from library import time
import library.youtube_dl as youtube
from library import wikipedia_summary
from library import weather
from library import light
from library import google_query
from library import spotify
from library import netmon
import os
from pydub import AudioSegment
from pydub.playback import play
import re
from flask import Flask, request
from library import light
app = Flask(__name__)
with open("library/ml-data/intents.json") as file:
data = json.load(file)
try:
with open("library/ml-data/data.pickle", "rb") as f:
words,labels,training,output = pickle.load(f)
except:
words = []
labels = []
docs_x = []
docs_y = []
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in labels:
labels.append(intent["tag"])
words = [stemmer.stem(w.lower()) for w in words if w != "?"]
words = sorted(list(set(words)))
labels = sorted(labels)
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
for x, doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w.lower()) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = numpy.array(training)
output = numpy.array(output)
with open("library/ml-data/data.pickle", "wb") as f:
pickle.dump((words,labels,training,output),f)
net = tflearn.input_data(shape=[None, len(training[0])]) # input layer
net = tflearn.fully_connected(net, 8) # 8 neurons
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax") #output layer
net = tflearn.regression(net)
model = tflearn.DNN(net)
try:
model.load("library/ml-data/model.tflearn")
except:
model = tflearn.DNN(net)
model.fit(training, output, n_epoch=1000, batch_size=8,show_metric=True)
model.save("library/ml-data/model.tflearn")
def bag_of_words(s,words):
bag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]
for se in s_words:
for i,w in enumerate(words):
if w == se:
bag[i] = 1
return numpy.array(bag)
@app.route('/')
def main():
inp = request.args['input']
nodename = request.args['nodename']
print(f"Request is from node: {nodename}")
# if re.findall('[0-9]\S+',inp):
# inp = inp.split()
# response = calculator.calculator(inp)
# return response
# TODO: Fix and not send notification to phone.
if inp.find('SSH') != -1:
subprocess.call("library/ssh.sh")
# TODO: Make usable with new server / client mode.
elif inp in ('text', 'write to a text file', 'Journal','write to text file'):
say("What do you want to write to the file? \n")
text_listen = r.listen(source)
text = r.recognize_google(text_listen)
text_file = open(f'{username}_text_file.txt', 'w')
text_file.write(text)
say("The following has been written to the file: \n \n" + text)
elif inp.startswith('download') and inp.endswith('from youtube'):
words2 = inp.split()
title = words2[1:][:-2]
youtube.youtube(title)
elif inp.startswith('find summary about') and inp.endswith('on wikipedia'):
words2 = inp.split()
summary = words2[3:][:-2]
wikipedia_summary.wikipedia_summary(summary)
elif inp.find('help') != -1:
return("This is what I can do, I can show the current time, write to a text file, download a youtube video, search a wikipedia summary and be a calculator")
elif inp.find('weather') != -1:
print(inp.find('weather'))
words2 = inp.split()
city_name = words2[-1]
weather_in_city = weather.weather(city_name)
print(weather_in_city)
return weather_in_city
elif inp.find('lights') != -1 or inp.find('light') != -1:
color2 = inp.split()
color = str(color2[-1])
light.setlightcolor(color)
return("Setting the light to " + color + "...")
elif inp.find('google') != -1:
inp.encode("utf-8")
print(inp)
output = re.search('((?<=search\sfor\s)|(what)|(where)|(who)|(when)|(why)|(which)|(whose)|(how)|(is)|(can))(\w*.)*',inp).group(0)
print(f"Doing a google search for {output}")
response = google_query.google_search(output)
title = response[0]['title']
text = response[0]['text']
stuff = title + '\n' + text
return(stuff.encode("utf-8"))
elif inp.find('scan') != -1 and inp.find('network') != -1:
netmon.scannet()
return("Network scan has finished and has been uploaded to the database.")
elif inp.startswith('play'):
song1 = inp.split(' ', 1)[1]
song2 = song1.replace('by ', '')
print(song2)
run_song = spotify.play_track(song2)
song_name = run_song['name']
artist_name = run_song['artists'][0]['name']
return(f"Now playing {song_name} by {artist_name}")
elif inp.startswith('pause'):
spotify.pause_music()
return("Paused the music.")
elif inp.startswith('unpause') or inp.startswith('resume'):
spotify.resume_music()
elif inp.find('volume') != -1:
if inp.find('raise') != -1:
return("Raising the music volume")
elif inp.find('lower') != -1:
return("Lowering the music volume")
else:
return "Doing nothing."
else:
results = model.predict([bag_of_words(inp,words)])
results_index = numpy.argmax(results)
tag = labels[results_index]
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
resp = random.choice(responses)
return resp
if __name__ == "__main__":
app.run(host="0.0.0.0",debug=True)