generated from Knowledge-Graph-Hub/kg-example
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathkg-idg.yaml
116 lines (116 loc) · 3.12 KB
/
kg-idg.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
name: kg-idg
description: kg-idg-xxxxx
output_directory: output_data
graph_data:
graph:
node_path: ./merged-kg_nodes.tsv
edge_path: ./merged-kg_edges.tsv
directed: false
verbose: true
nodes_column: id
node_types_column: category
default_node_type: biolink:NamedThing
sources_column: subject
destinations_column: object
default_edge_type: biolink:related_to
pos_validation:
edge_path: ./merged-kg_edges.tsv
neg_training:
edge_path: ./neg_train_edges.tsv
neg_validation:
edge_path: ./neg_valid_edges.tsv
embeddings:
embedding_file_name: test_embeddings_test_yaml.tsv
embedding_history_file_name: embedding_history.json
node_embedding_params:
node_embedding_method_name: SkipGram
walk_length: 10
batch_size: 512
window_size: 3
return_weight: 1.0
explore_weight: 1.0
iterations: 1
classifier:
edge_method: Average
classifiers:
- type: neural network
model:
outfile: model_mlp_test_yaml.h5
classifier_history_file_name: mlp_classifier_history.json
type: tensorflow.keras.models.Sequential
layers:
- type: tensorflow.keras.layers.Input
parameters:
shape: 100
- type: tensorflow.keras.layers.Dense
parameters:
units: 128
activation: relu
- type: tensorflow.keras.layers.Dense
parameters:
units: 32
activation: relu
- type: tensorflow.keras.layers.Dropout
parameters:
rate: 0.5
- type: tensorflow.keras.layers.Dense
parameters:
units: 16
activation: relu
- type: tensorflow.keras.layers.Dense
parameters:
units: 1
activation: sigmoid
model_compile:
loss: binary_crossentropy
optimizer: nadam
metrics:
- type: tensorflow.keras.metrics.AUC
parameters:
curve: PR
name: auprc
- type: tensorflow.keras.metrics.AUC
parameters:
curve: ROC
name: auroc
- type: tensorflow.keras.metrics.Recall
parameters:
name: Recall
- type: tensorflow.keras.metrics.Precision
parameters:
name: Precision
- type: accuracy
model_fit:
parameters:
batch_size: 4096
epochs: 5
callbacks:
- type: tensorflow.keras.callbacks.EarlyStopping
parameters:
monitor: val_loss
patience: 5
min_delta: 0.001
- type: tensorflow.keras.callbacks.ReduceLROnPlateau
- type: Decision Tree
model:
outfile: model_decision_tree_test_yaml.h5
type: sklearn.tree.DecisionTreeClassifier
parameters:
max_depth: 30
random_state: 42
- type: Random Forest
model:
outfile: model_random_forest_test_yaml.h5
type: sklearn.ensemble.RandomForestClassifier
parameters:
n_estimators: 500
max_depth: 30
n_jobs: 8
random_state: 42
- type: Logistic Regression
model:
outfile: model_lr_test_yaml.h5
type: sklearn.linear_model.LogisticRegression
parameters:
random_state: 42
max_iter: 1000