forked from matthewearl/deep-anpr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
154 lines (109 loc) · 4.88 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright (c) 2016 Matthew Earl
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
# NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
# USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
Definition of the neural networks.
"""
__all__ = (
'get_training_model',
'get_detect_model',
'WINDOW_SHAPE',
)
import tensorflow as tf
import common
WINDOW_SHAPE = (64, 128)
# Utility functions
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W, stride=(1, 1), padding='SAME'):
return tf.nn.conv2d(x, W, strides=[1, stride[0], stride[1], 1],
padding=padding)
def max_pool(x, ksize=(2, 2), stride=(2, 2)):
return tf.nn.max_pool(x, ksize=[1, ksize[0], ksize[1], 1],
strides=[1, stride[0], stride[1], 1], padding='SAME')
def avg_pool(x, ksize=(2, 2), stride=(2, 2)):
return tf.nn.avg_pool(x, ksize=[1, ksize[0], ksize[1], 1],
strides=[1, stride[0], stride[1], 1], padding='SAME')
def convolutional_layers():
"""
Get the convolutional layers of the model.
"""
x = tf.placeholder(tf.float32, [None, None, None])
# First layer
W_conv1 = weight_variable([5, 5, 1, 48])
b_conv1 = bias_variable([48])
x_expanded = tf.expand_dims(x, 3)
h_conv1 = tf.nn.relu(conv2d(x_expanded, W_conv1) + b_conv1)
h_pool1 = max_pool(h_conv1, ksize=(2, 2), stride=(2, 2))
# Second layer
W_conv2 = weight_variable([5, 5, 48, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool(h_conv2, ksize=(2, 1), stride=(2, 1))
# Third layer
W_conv3 = weight_variable([5, 5, 64, 128])
b_conv3 = bias_variable([128])
h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3) + b_conv3)
h_pool3 = max_pool(h_conv3, ksize=(2, 2), stride=(2, 2))
return x, h_pool3, [W_conv1, b_conv1,
W_conv2, b_conv2,
W_conv3, b_conv3]
def get_training_model():
"""
The training model acts on a batch of 128x64 windows, and outputs a (1 +
7 * len(common.CHARS) vector, `v`. `v[0]` is the probability that a plate is
fully within the image and is at the correct scale.
`v[1 + i * len(common.CHARS) + c]` is the probability that the `i`'th
character is `c`.
"""
x, conv_layer, conv_vars = convolutional_layers()
# Densely connected layer
W_fc1 = weight_variable([32 * 8 * 128, 2048])
b_fc1 = bias_variable([2048])
conv_layer_flat = tf.reshape(conv_layer, [-1, 32 * 8 * 128])
h_fc1 = tf.nn.relu(tf.matmul(conv_layer_flat, W_fc1) + b_fc1)
# Output layer
W_fc2 = weight_variable([2048, 1 + 7 * len(common.CHARS)])
b_fc2 = bias_variable([1 + 7 * len(common.CHARS)])
y = tf.matmul(h_fc1, W_fc2) + b_fc2
return (x, y, conv_vars + [W_fc1, b_fc1, W_fc2, b_fc2])
def get_detect_model():
"""
The same as the training model, except it acts on an arbitrarily sized
input, and slides the 128x64 window across the image in 8x8 strides.
The output is of the form `v`, where `v[i, j]` is equivalent to the output
of the training model, for the window at coordinates `(8 * i, 4 * j)`.
"""
x, conv_layer, conv_vars = convolutional_layers()
# Fourth layer
W_fc1 = weight_variable([8 * 32 * 128, 2048])
W_conv1 = tf.reshape(W_fc1, [8, 32, 128, 2048])
b_fc1 = bias_variable([2048])
h_conv1 = tf.nn.relu(conv2d(conv_layer, W_conv1,
stride=(1, 1), padding="VALID") + b_fc1)
# Fifth layer
W_fc2 = weight_variable([2048, 1 + 7 * len(common.CHARS)])
W_conv2 = tf.reshape(W_fc2, [1, 1, 2048, 1 + 7 * len(common.CHARS)])
b_fc2 = bias_variable([1 + 7 * len(common.CHARS)])
h_conv2 = conv2d(h_conv1, W_conv2) + b_fc2
return (x, h_conv2, conv_vars + [W_fc1, b_fc1, W_fc2, b_fc2])